
Discrete series of odd general spin groups

Yeansu Kim, Ivan Matić
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Abstract

We obtain a Mœglin-Tadić type classification of the non-cuspidal dis-
crete series of odd general spin groups over non-archimedean local fields of
characteristic zero. Our approach presents a simplified, uniform, and slightly
different construction of a bijective correspondence between the set of iso-
morphism classes of non-cuspidal discrete series representations and the set
of so called admissible triples, a notion obtained by readily extending the
analogous notion due to Mœglin-Tadić from the case of classical groups to
that of odd general spin groups. We use almost exclusively algebraic methods,
one of which replaces subtle theory on intertwining operators for odd gen-
eral spin groups by calculation of Jacquet modules. In this way we provide
a slightly different proof of the classification of discrete series representa-
tions for classical groups, which contains some more concrete information on
the admissible triples. We expect that our classification has an advantage
of being rather directly applicable to several other reductive p-adic groups,
including even general spin groups and similitude classical groups.

1 Introduction

Irreducible square-integrable representations present a prominent part of the uni-
tary dual of reductive groups over non-archimedean local fields, with numerous
applications in harmonic analysis and in the theory of automorphic forms. Such
representations, also called the discrete series, have been classified by Mœglin and
Tadić in the case of classical groups defined over non-archimedean local fields
of characteristic zero in their seminal work [20, 22]. Their work completely de-
scribes that prominent class of irreducible representations, modulo cuspidal ones,
in terms of the so-called admissible triples which consist of a Jordan block, the
partial cuspidal support and the ε-function. We note that the Jordan block en-
codes the Langlands parameter in Langlands parametrization, while the latter
two components together constitute a datum that, modulo the extended Lang-
lands parameterization for cuspidal representations, is equivalent to a character of
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the component group of the centralizer of the Langlands parameter. Their work
relies on the Basic Assumption, which now follows from [1], [21, Théorème 3.1.1],
and [5, Theorem 7.8], and is also known to hold for the general spin groups in the
characteristic zero case [21, Théoreme 3.1.1]. We discuss the Basic Assumption in
more detail in Section 3.

Although the Mœglin-Tadić classification is intrinsically combinatorial and
can be elegantly used for various computations, the proofs which appear in [20]
and [22] are rather long and sometimes happen to be highly involved.

The main purpose of this paper is to extend the Mœglin-Tadić classification
to the case of the split odd general spin groups over non-archimedean local fields
in a simplified and more uniform way. We note that the rank n split odd general
spin group is a split reductive linear algebraic group of type Bn, whose derived
subgroup is a double covering of a split special orthogonal group. Our classification
is also given in terms of admissible triples, i.e., we construct a natural bijection
between the set of all isomorphism classes of discrete series of the odd general spin
group and the set of all admissible triples, but we have substantially shortened
several proofs given in the original work of Mœglin and Tadić.

There are certain differences which appear in our approach, although we
intend to follow the classification for the classical groups. Firstly, we use mostly
algebraic methods, e.g. the Jacquet module method, except for the fact that we
employ L-function techniques in the GL case to calculate the Jordan blocks of
discrete series appearing in embeddings of a particular type (Proposition 3.3).

Secondly, when we define the ε-function on certain single elements of the Jor-
dan blocks, we use a definition similar to the one suggested in [33], which seems
to be more appropriate in the GSpin situation than the original one (Definition
4.4). In this way a definition of the ε-function is entirely provided in terms of the
Jacquet modules, which helps us to provide a restriction type results (Theorem
4.10) without the usage of the intertwining operators method, as was the case in
[20, Section 6]. We note that in this case we need to fix a labeling of irreducible
tempered subrepresentations appearing in the induced representation of a particu-
lar type. On the other hand, in [20] the definition of the ε-function in the considered
case (τ1 and τ−1 in the above Theorem 1.1), and such a labeling, was provided
using much more subtle theory involving standard intertwining operators, their
analytic continuation, and coherent normalization using L-functions and ε-factors.
Up to our knowledge, such results are not yet known for the GSpin groups in their
full extent.

Thirdly, we use a slightly different approach when we construct and define
the admissible triples. We define the ε-function only on ’consecutive’ pairs appear-
ing in the Jordan blocks, i.e., only on ordered pairs of the form ((a , ρ), (a, ρ))
(Definition 3.6). This approach provides as many properties as the original one,
and also helps us to avoid many technical difficulties arising when studying the
restrictions of the ε-function, which happens to be crucial for the proof of the in-
jectivity part (Theorem 5.3). Moreover, we obtain some more concrete information
on the properties of the ε-function which can be read off from Jacquet modules
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(characterizations (i), (ii), and (iii) from Theorem 1.1(3)).
Fourthly, we prove the surjectivity part of the classification (Theorem 5.4)

in a completely different manner than in [22], using an inductive procedure based
on an approach introduced in [24] and further developed in [26] and in [16], which
enables us to significantly shorten the proofs of results analogous to ones appearing
in [22, Sections 9, 10, 11].

Note that our main ideas of the proof of the classification results in the
current paper are completely independent of the Mœglin-Tadić one, and all our
methods and proofs can be used in the classical group case. Note that we only use
some results appearing in [22, Section 4], to avoid repeating some calculations of
the Jacquet modules, which happen to be completely analogous in both classical
and GSpin group cases. In sum, our classification relies only on the theory of
intertwining operators in the general linear groups case, the square-integrability
criterion, the uniqueness of the partial cuspidal support, and the structural formula
in the GSpin case. Written in this way, the classification has an advantage of
being rather directly applicable to many other reductive p-adic groups which are
of particular interest, such as the metaplectic group or the even general spin group
and, partially, the generalized unitary group and the generalized symplectic group.

Let us now briefly explain the main idea of the proof of our main results.
The classification of discrete series is done in two stages, the first being the classi-
fication of the so-called strongly positive discrete series (Definition 2.2). We note
that the classification of the strongly positive discrete series for the general spin
groups is given by the first author in [8, Theorem A], closely following the meth-
ods introduced in [12]. Using a description of the Jacquet modules of the strongly
positive representations, we can show that they correspond to admissible triples
of ’alternated type’ (see Definition 5.1 and Proposition 3.11).

In the second stage, to provide the inductive construction of discrete series,
we obtain several properties of the attached ε-functions (see Theorem 3.18 and
Theorem 4.10). Initially, such properties rely on certain embeddings of discrete
series, while the other crucial role in the classification is played by the behavior
of restrictions of the ε-functions, which we completely describe using the Jacquet
modules method and methods of intertwining operators.

Note that one of the main steps in such a description involves identifying
certain prominent irreducible constituents of the Jacquet modules of certain tem-
pered representations (see Theorem 1.1(3) (i), (ii), and (iii)). This approach was
first introduced in [34, Section 6], and further enhanced in [15, 16]. In other words,
this approach enables one to extract certain kinds of information about represen-
tation from ’general linear’ contributions to irreducible subquotients of its Jacquet
modules.

For the convenience of the reader, we cite our main results here. For the no-
tation and definitions we refer the reader to the following section and Definitions
3.1, 3.6, 4.4, 5.1. We note that for an irreducible essentailly self-dual cuspidal rep-
resentation ρ of the general linear group and an irreducible cuspidal representation
σcusp of the GSpin group such that ρ o σcusp reduces we fix a choice of labeling
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irreducible tempered representations τ1 and τ−1 such that ρo σcusp = τ1 + τ−1.

Theorem 1.1. There exists a bijective correspondence between the set of all
discrete series σ of the odd GSpin group and the set of all admissible triples
(Jord, σc, ε), denoted by σ = σ(Jord,σc,ε) such that the following holds:

(1) Jord(σ) = Jord and σc is isomorphic to the partial cuspidal support of σ.

(2) If (Jord, σc, ε) is an admissible triple of alternated type, then σ is a strongly
positive discrete series.

(3) Let (a, ρ) ∈ Jord such that a is defined and ε((a , ρ), (a, ρ)) = 1. Let ε :
D ⊆ Jord∪ Jord× Jord → {1,−1}. We put Jord′ = Jord \{(a , ρ), (a, ρ)}. If
(a, ρ) ∈ D, put D1 = {(a , ρ), (a, ρ)}, otherwise put D1 = ∅, and let D′ =
D \D1. Let ε′ : D′ → {1,−1} be defined in the following way:

• for (b, ρ′) ∈ D′ such that ε(b, ρ′) is defined let ε′(b, ρ′) = ε(b, ρ′),

• for (b, ρ′) ∈ D′ such that b is defined in Jord′ρ and (b , ρ′) 6= ((a ) , ρ),
let ε′((b , ρ′), (b, ρ′)) = ε((b , ρ′), (b, ρ′)),

• if in Jordρ we have a = b and c = (a ) , let

ε′((c, ρ), (b, ρ)) = ε((c, ρ), (a , ρ)) · ε((a, ρ), (b, ρ)).

Then (Jord′, σc, ε
′) is an admissible triple and σ is a subrepresentation of

δ([ν−
a −1

2 ρ, ν
a−1
2 ρ]) o σ(Jord′,σc,ε′).

Moreover, there is a unique irreducible tempered subrepresentation τ of

δ([ν−
a −1

2 ρ, ν
a −1

2 ρ]) o σ(Jord′,σc,ε′) (1)

such that σ is a unique irreducible subrepresentation of δ([ν
a +1

2 ρ, ν
a−1
2 ρ])oτ .

Furthermore, we have

(i) If there is b ∈ Jordρ such that b = a, then ε((a, ρ), (b, ρ)) = 1 if and
only if τ is a unique irreducible subrepresentation of (1) which contains
an irreducible constituent of the form

δ([ν
a +1

2 ρ, ν
b−1
2 ρ])⊗ π

in the Jacquet module with respect to an appropriate parabolic subgroup.

(ii) If there is b ∈ Jordρ such that (a ) = b, then ε((b, ρ), (a , ρ)) = 1 if and
only if τ is a unique irreducible subrepresentation of (1) which contains
an irreducible constituent of the form

δ([ν
b+1
2 ρ, ν

a −1
2 ρ])× δ([ν

b+1
2 ρ, ν

a −1
2 ρ])⊗ π

in the Jacquet module with respect to an appropriate parabolic subgroup.
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(iii) If a is even and a = min(Jordρ), then ε(a , ρ) = 1 if and only if τ is a
unique irreducible subrepresentation of (1) which contains an irreducible
constituent of the form

δ([ν
1
2 ρ, ν

a −1
2 ρ])× δ([ν 1

2 ρ, ν
a −1

2 ρ])⊗ π

in the Jacquet module with respect to an appropriate parabolic subgroup.

We note that characterizations (i), (ii) and (iii) from the previous theorem do
not appear in [20, 22]. Since all our results also hold in the classical group case, in
this way we obtain a useful tool for identification of discrete series subquotients of
induced representations of both classical and odd GSpin groups. Simpler versions
of these characterizations have recently played an important role in [10], [17] and
[18].

It is not our aim to discuss the relation between the obtained bijective cor-
respondence and the Langlands parametrization, since the extended Langlands
parametrization for the GSpin groups is still conjectural. However, we expect the
consequences analogous to the ones observed in [22], i.e., elements appearing in the
Jordan blocks should correspond to the conjectural discrete Langlands parameter,
i.e., the equivalence classes of semi-simple morphisms ϕ from WF × SL(2,C) to
the L-group LGSpin2n+1 = GSp2n(C) oW ′F satisfying several conditions where
W ′F is the Weil-Deligne group of F . Note that the Langlands parameter is called
discrete if it does not factor through a proper Levi subgroup. Also, the ε-function
should correspond to morphisms from CentLG(Im(ϕ)) to {±1} (see [4, 6, 9, 21]
for recent works on the local Langlands correspondence for odd GSpin groups). In
our article, we are not able to discuss the dimension relation for GSpin2n+1; it is

conjecturally
∑

(a,ρ)∈Jord(σ)

a·dimρ = 2n for a discrete series σ of GSpin2n+1.

A classification of discrete series for symplectic and odd-orthogonal groups
over a non-archimedean local field of characteristic zero based on the LLC approach
is also given in [36], but at the moment these methods do not seem to be applicable
to the GSpin case.

We take a moment to describe the contents of the paper in more detail. In
the second section we recall the required notation and preliminaries. The third
and the fourth sections are the technical heart of the paper. In those two sections
we introduce several invariants of discrete series and prove many of their basic
properties. In the fifth section our main results are stated and proved.

The first author has been supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIP)
(No. 2017R1C1B2010081).
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2 Preliminaries

Let F be a non-archimedean local field of characteristic zero. Let Gn denote a
split general spin group GSpin2n+1 of semisimple rank n defined over F , i.e.,
the F -split connected reductive algebraic group having based root datum dual to
that of GSp2n. Here GSp2n stands for the split reductive linear algebraic group of
type Bn whose derived subgroup is a double covering of a split special orthogonal
group. Let Gn denote the group of F -points of Gn. Similarly, let GLn denote a
general linear group of rank n defined over F and let GLn denote the group of
its F -points. All the representations of p-adic groups which we consider will be
smooth.

Let Irr(GLn) denote the set of all irreducible admissible representations of
GLn, and let Irr(Gn) denote the set of all irreducible admissible representations
of Gn. Let R(GLn) stand for the Grothendieck group of the abelian category of
finite length admissible representations of GLn and define R(GL) = ⊕n≥0R(GLn).
Similarly, let R(Gn) stand for the Grothendieck group of the abelian category of
finite length admissible representations of Gn and define R(G) = ⊕n≥0R(Gn).

We fix a choice of a Borel subgroup as in [3]. Let s = (n1, n2, . . . , nk) denote an
ordered partition of some n′ ≤ n and let Ps = MsNs denote the standard parabolic
subgroup of Gn corresponding to the partition s. It follows from [2, Theorem 2.7]
that the Levi factor Ms is isomorphic to GLn1 ×GLn2 ×· · ·×GLnk ×Gn−n′ . If δi
is a representation of GLni , for i = 1, 2, . . . , k, and τ a representation of Gn−n′ , we
denote by δ1× δ2× · · · × δk o τ the representation IndGnMs

(δ1⊗ δ2⊗ · · · ⊗ δk ⊗ τ) of
Gn induced from the representation δ1 ⊗ δ2 ⊗ · · · ⊗ δk ⊗ τ of Ms using normalized
parabolic induction. We use a similar notation to denote a parabolically induced
representation of GLm.

For any irreducible admissible representation π of GLn, and for 0 ≤ k ≤ n,
let r(k)(π) denote the normalized Jacquet module of π with respect to the stan-
dard parabolic subgroup having Levi subgroup isomorphic to GLk ×GLn−k, and
we abuse notation to identify r(k)(π) with its semisimplification in R(GLk) ⊗
R(GLn−k). We define m∗(π) =

∑n
k=0(r(k)(π)) ∈ R(GL) ⊗ R(GL), for an irre-

ducible representation π of GLn, and then extend m∗ linearly to the whole of
R(GL).

Let us denote by ν the composition of the determinant mapping with the
normalized absolute value on F . Let ρ ∈ Irr(GLk) denote a cuspidal representa-
tion. By a segment of cuspidal representations of GLk we mean a set of the form
{ρ, νρ, . . . , νmρ} ⊂ R(GLk), which we denote by [ρ, νmρ].

Let ρ denote an irreducible unitary cuspidal representation of GLk and let
a, b ∈ R are such that b− a is a non-negative integer. The induced representation
νbρ×νb−1ρ×· · ·×νaρ has a unique irreducible subrepresentation, which we denote
by δ([νaρ, νbρ]). By the results of [37], assigning δ([νaρ, νbρ]) to segment [νaρ, νbρ]
gives a bijection between appropriately long segments and isomorphism classes of
irreducible essentially square-integrable representations in R(GL).
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We frequently use the following equation [37, Proposition 3.4]:

m∗(δ([νaρ, νbρ])) =

b∑
i=a−1

δ([νi+1ρ, νbρ])⊗ δ([νaρ, νiρ]).

For a representation σ ∈ R(Gn) and 1 ≤ k ≤ n, we denote by r(k)(σ) the
normalized Jacquet module of σ with respect to the parabolic subgroup P(k) having
the Levi subgroup equal to GLk × Gn−k. We abuse notation to identify r(k)(σ)
with its semisimplification in R(GLk)⊗R(Gn−k) and consider

µ∗(σ) = 1⊗ σ +

n∑
k=1

r(k)(σ) ∈ R(GL)⊗R(G).

There is a natural partial order on the Grothendieck groups which we con-
sider: π1 ≤ π2 if m(ρ, π1) ≤ m(ρ, π2) for all irreducible smooth ρ, where m(ρ, πi)
denotes the multiplicity of ρ in πi for i = 1, 2.

Note that if a twist of some irreducible unitarizable representation ρ ∈ R(GL)
’appears in’ the cuspidal support of a discrete series σ ∈ R(G), then ρ is an
essentially self-dual representation [8, Proposition 2.5, Remark 2.3], i.e., if ρ ∼=
ν−e(ρ)ρu, where ρu is unitarizable, then ρu ∼= ρ̃u ⊗ (ωσ ◦ det), where ωσ is the
central character of σ restricted to the identity component of the center of G and
consider it as the character of F×.

We take a moment to state a result, derived in [8, Theorem 3.4], which
presents a crucial structural formula for our calculations of Jacquet modules of
induced representations.

Theorem 2.1 (Structural formula). Let ρ denote an irreducible essentially self-
dual unitarizable cuspidal representation of GLn and let k, l ∈ R be such that k+ l
is a non-negative integer. Let σ ∈ R(G) be an admissible representation of finite
length. Write µ∗(σ) =

∑
τ,σ′ τ ⊗ σ′. Then the following holds:

µ∗(δ([ν−kρ, νlρ]) o σ) =

l∑
i=−k−1

l∑
j=i

∑
τ,σ′

δ([ν−iρ, νkρ])×

× δ([νj+1ρ, νlρ])× τ ⊗ δ([νi+1ρ, νjρ]) o σ′.

We omit δ([νxρ, νyρ]) if x > y.

We recall the definition of strongly positive representations of GSpin groups.
Note that the classification of strongly positive representation is typically the first
step towards the classification of discrete series. As with the Mœglin-Tadić classi-
fication, it will turn out that strongly positive discrete series representations cor-
respond to admissible triples of alternated type (Proposition 3.11 and Definition
5.1).
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Definition 2.2 (Strongly positive). An irreducible representation σ ∈ Irr(G) is
called strongly positive if for every embedding

σ ↪→ νs1ρ1 × νs2ρ2 × · · · × νskρk o σcusp

where ρi ∈ R(GL) is an irreducible unitary cuspidal representation for i =
1, 2, . . . , k, σcusp is an irreducible cuspidal representation of Gn′ and si ∈ R, i =
1, 2, . . . , k, we have si > 0 for each i.

We also recall the square-integrability criterion for GSpin groups [2, Propo-
sition 4.2].

Proposition 2.3 (Square-integrability criterion). Let βi = (1, . . . , 1, 0, . . ., 0) ∈
Rn, where 1 appears i times. Let σ ↪→ νe(ρ1)ρ1 × νe(ρ2)ρ2 × · · · × νe(ρk)ρk o σcusp
be an irreducible representation of Gn, where ρi is an irreducible cuspidal unitary
representation of GLni and σcusp is an irreducible cuspidal representation of Gn′ .
We set

e?(σ) = (e(ρ1), . . . , e(ρ1), . . . , e(ρk), . . . , e(ρk), 0, . . . , 0) ∈ Rn

(Here e(ρi) appears ni times for i = 1, 2, . . . , k). If σ is square integrable (resp.
tempered), then

(e?(σ), βn1
) > 0, (e?(σ), βn1+n2

) > 0, . . . , (e?(σ), βn1+···+nk) > 0

(resp. (e?(σ), βn1
) ≥ 0, (e?(σ), βn1+n2

) ≥ 0, . . . , (e?(σ), βn1+···+nk) ≥ 0).

Conversely, if the above inequalities hold for all embeddings σ ↪→ νe(ρ1)ρ1 ×
νe(ρ2)ρ2 × · · · × νe(ρk)ρk o σcusp where ρi is an irreducible cuspidal unitary repre-
sentation of GLni and σcusp is an irreducible cuspidal representation of Gn′ , then
σ is square integrable (resp. tempered).

Throughout the paper, for simplicity of the notation we abbreviate a ‘discrete
series representation’ or a ‘representation belonging to the discrete series’ to simply
‘discrete series’.

Following the same lines as in proofs of [13, Lemma 3.4, Theorem 3.5], which
completely rely on the representation theory of the general linear group and the
square-integrability criterion, so can be applied to our situation, we obtain:

Corollary 2.4. Suppose that π ∈ R(G) is not square-integrable (resp. not tem-
pered). Then there exist a, b such that b−a ∈ Z and a+ b ≤ 0 (resp. a+ b < 0), an
irreducible cuspidal representation ρ ∈ R(GL), and an irreducible representation
π′ ∈ R(G), such that π is a subrepresentation of δ([νaρ, νbρ]) o π′.

We briefly recall the subrepresentation version of the Langlands classification
for general linear groups.

For an irreducible essentially square-integrable representation δ ∈ R(GL),
there is a unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable. Note that
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e(δ([νaρ, νbρ])) = (a + b)/2. Suppose that δ1, δ2, . . . , δk are irreducible essentially
square-integrable representations such that e(δ1) ≤ e(δ2) ≤ · · · ≤ e(δk). Then
the induced representation δ1 × δ2 × · · · × δk has a unique irreducible subrepre-
sentation, which we denote by L(δ1, δ2, . . . , δk). This irreducible subrepresentation
is called the Langlands subrepresentation, and it appears with multiplicity one
in the composition series of δ1 × δ2 × · · · × δk. Every irreducible representation
π ∈ R(GL) is isomorphic to some L(δ1, δ2, . . . , δk) and, for a given π, the repre-
sentations δ1, δ2, . . . , δk are unique up to a permutation.

Similarly, throughout the paper we use the subrepresentation version of the
Langlands classification for Gn, since it is more appropriate for our Jacquet mod-
ule considerations. So, we realize a non-tempered irreducible representation π
of Gn as a unique irreducible subrepresentation of an induced representation of
the form δ1 × δ2 × · · · × δk o τ , where τ is a tempered representation of some
Gt, and δ1, δ2, . . . , δk ∈ R(GL) are irreducible essentially square-integrable rep-
resentations such that e(δ1) ≤ e(δ2) ≤ · · · ≤ e(δk) < 0. In this case, we write
π = L(δ1, δ2, . . . , δk, τ) and, for a given π, the representations δ1, δ2, . . . , δk are
unique up to a permutation.

The following result [7, Lemma 5.5], whose proof is valid in the GSpin case,
is used several times.

Lemma 2.5. Suppose that π ∈ R(Gn) is an irreducible representation, λ an irre-
ducible representation of the Levi subgroup M of Gn, and π is a subrepresentation
of IndGnM (λ). If L > M is a Levi subgroup of Gn, then there is an irreducible

subquotient ρ of IndLM (λ) such that π is a subrepresentation of IndGnL (ρ).

3 Invariants of discrete series I: the ε-function on
pairs

In this section we introduce several invariants of discrete series and obtain their
basic properties.

A partial cuspidal support of a discrete series σ ∈ Irr(Gn) is an irreducible
cuspidal representation σcusp of some Gm such that there exists a representation
π ∈ R(GLn−m) such that σ is a subrepresentation of π o σcusp. We note that it
follows directly from [8, Proposition 2.5] that such a representation σcusp is unique.
From now on, for any irreducible admissible representation σ, σcusp will denote its
partial cuspidal support.

Definition 3.1. The Jordan block of a discrete series σ ∈ R(G), which we denote
by Jord(σ), is the set of all pairs (a, ρ) where ρ is an irreducible cuspidal unitariz-
able essentially self-dual representation of some GLnρ and a is a positive integer
such that the following two conditions are satisfied:

(1) The positive integer a is even if and only if L(s, ρ, r) has a pole at s = 0. Here,
the local L-function L(s, ρ, r) is the one defined by Shahidi (see for instance
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[28], [29]), and r = Sym2Cnρ ⊗ µ−1, where Sym2Cnρ is the symmetric-square
representation of the standard representation on Cnρ of GLnρ(C) and µ is the

similitude character of Ĝn, as in [2, Proposition 5.6].

(2) The induced representation δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]) o σ is irreducible.

Note that Jord(σ) is not a multiset. For a given irreducible cuspidal unitariz-
able essentially self-dual representation ρ of GL, we let Jordρ(σ) := {a : (a, ρ) ∈
Jord(σ)}.

For z ∈ (1/2)Z let µ(z, σ)(s) be the Plancherel measure which is the com-
posite of two standard intertwining operators:

νsδ([ν−
z−1
2 ρ, ν

z−1
2 ρ])oσ → ν−sδ([ν−

z−1
2 ρ, ν

z−1
2 ρ])oσ → νsδ([ν−

z−1
2 ρ, ν

z−1
2 ρ])oσ.

Lemma 3.2. z ∈ Jord(σ) if and only if µ(z, σ)(s) has a pole at s = 0

Proof. This follows from the condition (2) from the definition of Jord(σ) and the
result of Harish-Chandra ([3, Section 2], see also [35]).

First we prove an analogue of [22, Proposition 2.1].

Proposition 3.3. Let σ ∈ Irr(Gn) denote a discrete series and let ρ ∈ Irr(GLnρ)
denote an essentially self-dual cuspidal unitarizable representation. Suppose that
x, y are half-integers such that x − y is a non-negative integer, and assume that
x, y ∈ Z if and only if L(s, ρ, r) has no pole at s = 0. If there is an embedding

σ ↪→ νxρ× νx−1ρ× · · · × νyρo σ′,

where σ′ ∈ Irr(Gm) is a discrete series, then the following holds:

(1) If y > 0, then 2y−1 ∈ Jordρ(σ
′) and Jordρ(σ) = Jordρ(σ

′)∪{2x+1}\{2y−1}.

(2) If y < 0, then Jordρ(σ) = Jordρ(σ
′) ∪ {2x+ 1, 1− 2y}. Also, 2x+ 1, 1− 2y /∈

Jordρ(σ
′).

Proof. First, we note that for cuspidal unitarizable representations ρ1 and ρ2 ∈
Irr(GL) and non-negative integers z1 and z2, the normalizing factor, modulo a
holomorphic invertible function of s, corresponding to an intertwining operator
between two essentially square integrable representations

νsδ([ν−
z1−1

2 ρ1, ν
z1−1

2 ρ1])× νs
′
δ([ν−

z2−1
2 ρ2, ν

z2−1
2 ρ2])→

νs
′
δ([ν−

z2−1
2 ρ2, ν

z2−1
2 ρ2])× νsδ([ν−

z1−1
2 ρ1, ν

z1−1
2 ρ1])

is, by [27] (see also [23, I.4. the formula (1)]), equal to

L(s− s′, δ([ν−
z1−1

2 ρ1, ν
z1−1

2 ρ1])× ˜
δ([ν−

z2−1
2 ρ2, ν

z2−1
2 ρ2]))·

·
(
L(1 + s− s′, δ([ν−

z1−1
2 ρ1, ν

z1−1
2 ρ1])× ˜

δ([ν−
z2−1

2 ρ2, ν
z2−1

2 ρ2]))

)−1
=

= L(s− s′ + |(z1 − z2)/2|, ρ1 × ρ̃2) (L(s− s′ + (z1 + z2)/2, ρ1 × ρ̃2))
−1
. (2)
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As in [22, Proposition 2.1], to calculate the Plancherel measure µ(z, σ)(s)
modulo a holomorphic invertible function of s, we apply the formula (2). Using
the factorization of intertwining operators [27] or [30, Theorem 4.2.2], µ(z, σ)(s)
consists of two parts: µ(z, σ′)(s) and the standard intertwining operators between
representations of GL. Since the computation of the standard intertwining opera-
tors between representations of GL modulo a holomorphic invertible function of s
in terms of L-functions is well known (2), we have the following equality modulo
a holomorphic invertible function of s:

µ(z, σ)(s) = µ(z, σ′)(s) · L(s− x+ (z − 1)/2, ρ× ρ̃)

L(s− y + (z − 1)/2 + 1, ρ× ρ̃)
·

· L(s+ y + (z − 1)/2, ρ× ρ̃)

L(s+ x+ (z − 1)/2 + 1, ρ× ρ̃)
· L(−s− x+ (z − 1)/2, ρ× ρ̃)

L(−s− y + (z − 1)/2 + 1, ρ× ρ̃)
·

· L(−s+ y + (z − 1)/2, ρ× ρ̃)

L(−s+ x+ (z − 1)/2 + 1, ρ× ρ̃)
. (3)

We now use Lemma 3.2 to prove the proposition. First, it is known that
L(s, ρ × ρ̃) has a pole only at s = 0 and it is a simple pole. Furthermore, it is
non-zero. Therefore, the product of the L-functions in (3) has a (double) pole at
s = 0 if and only if either x = (z−1)/2 or y = −(z−1)/2 and has zero if and only
if either y = (z−1)/2+1 or x = −(z−1)/2−1. Furthermore, it is also known that
the Plancherel measure (both µ(z, σ)(s) and µ(z, σ′)(s)) has order zero or two at
s = 0. Therefore, µ(z, σ)(s) has a pole at s = 0 if and only if either one of the
following cases holds:

• µ(z, σ′)(s) has a pole at s = 0 and y 6= (z − 1)/2 + 1,

• x = (z − 1)/2,

• y = −(z − 1)/2.

Note that the case x 6= −(z − 1)/2− 1 always holds since −(z − 1)/2− 1 ≤ −1.
If y > 0, the case y = −(z − 1)/2 cannot happen and therefore, Jordρ(σ) =

Jordρ(σ
′) ∪ {2x+ 1} \ {2y − 1}.

If y ≤ 0, the case y 6= (z−1)/2+1 always holds. Therefore, we have Jordρ(σ) =
Jordρ(σ

′) ∪ {2x+ 1,−2y + 1}.

Let σcusp ∈ R(G) denote an irreducible cuspidal representation, and let
ρ ∈ R(GL) stand for an irreducible self-dual cuspidal representation. By [21,

Théoreme 3.1.1], there is a unique positive integer α such that ν
α−1
2 ρ o σcusp

reduces.
Following the same lines as in the proofs of [32, Theorems 2.3, 2.5] and in the

proofs of [31, Propositions 4.1, 4.2], all of which completely rely on the structural
formula, so can be directly applied to the odd GSpin situation, we deduce that
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δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]) o σcusp reduces if and only if a ≥ α. This implies the so-called

Basic Assumption for the odd GSpin groups: Jordρ(σcusp) is finite and

• if ν
α−1
2 ρo σcusp reduces for α ≥ 3 then α− 2 = max(Jordρ(σcusp)), and for

a ∈ Jordρ(σcusp) such that a ≥ 3 we have a− 2 ∈ Jordρ(σcusp),

• if ν
α−1
2 ρo σcusp reduces for α ∈ {1, 2}, then Jordρ(σcusp) = ∅.

The previous proposition will enable us to connect Jord(σ) and Jord(σcusp).
For any ordered pair (ρ, σcusp) consisting of an irreducible self-dual cuspidal

representation ρ ∈ R(GL) and an irreducible cuspidal representation σcusp ∈ R(G)
such that ρoσcusp reduces, we fix once and for all a choice of labeling of mutually
non-isomorphic irreducible tempered representations τ1 and τ−1 such that in R(G)
we have ρo σcusp = τ1 + τ−1. We note that such equality in R(G) follows from [3,
Theorem 2.6].

Lemma 3.4. Let σ ∈ Irr(Gn) be a discrete series, let ρ ∈ Irr(GLk) be a cuspidal
unitarizable representation, and let x ∈ R be such that there exists an irreducible
representation σ′ of Gn−k such that σ is a subrepresentation of the induced repre-
sentation

νxρo σ′.

Then x is a half-integer, and (2x+ 1, ρ) ∈ Jord(σ).

Proof. First, [8, Remark 2.3] and [21, Théoreme 3.1.1] imply that x is a half-
integer. Let us now prove that σ′ has to be a tempered representation. Otherwise,
by Corollary 2.4, there are x1, y1 such that x1 − y1 ∈ Z and x1 + y1 < 0 and
representations ρ1 ∈ Irr(GLk1), π1 ∈ Irr(Gn1

), such that σ′ ↪→ δ([νx1ρ1, ν
y1ρ1]) o

π1. Thus, σ is a subrepresentation of νxρ× δ([νx1ρ1, ν
y1ρ1]) o π1.

If νxρ× δ([νx1ρ1, ν
y1ρ1]) is irreducible, we have

νxρ× δ([νx1ρ1, ν
y1ρ1]) ∼= δ([νx1ρ1, ν

y1ρ1])× νxρ,

which leads to embeddings

σ ↪→ δ([νx1ρ1, ν
y1ρ1])× νxρo π1

and
σ ↪→ νy1ρ1 × νy1−1ρ1 × · · · × νx1ρ1 × νz1ρ′1 × · · · × νzkρ′k o π2,

for cuspidal representations ρ′1, . . . , ρ
′
k ∈ Irr(GL), π2 ∈ Irr(Gn2

). Since x1 +
y1 < 0 and σ is square-integrable, this contradicts Proposition 2.3. Thus,
νxρ × δ([νx1ρ1, ν

y1ρ1]) reduces, so since x > 0 by [37, Theorem 4.2] we have
ρ1 ∼= ρ and y1 = x− 1.

By Lemma 2.5, there is an irreducible subquotient π of νxρ×δ([νx1ρ1, ν
y1ρ1])

such that σ is a subrepresentation of πoπ1, and it follows that π ∼= δ([νx1ρ1, ν
xρ1]),

which is impossible since x1 + x ≤ 0. Thus, σ′ is tempered, and if it is a discrete
series the claim of the lemma follows from Proposition 3.3.
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Let us now suppose that σ′ is not a discrete series. Then, by Corollary 2.4,
σ′ is a subrepresentation of an induced representation of the form

δ([ν−x1ρ1, ν
x1ρ1])× δ([ν−x2ρ2, ν

x2ρ2])× · · · × δ([ν−xkρk, νxkρk]) o σ′′,

for a discrete series σ′′ ∈ Irr(Gn′′) and k ≥ 1. In the same way as in the first part
of the proof, we deduce that ρ1 ∼= ρ, x1 = x− 1, and σ is a subrepresentation of

δ([ν−x+1ρ, νxρ])× δ([ν−x2ρ2, ν
x2ρ2])× · · · × δ([ν−xkρk, νxkρk]) o σ′′.

The square-integrability of σ implies that k = 1, since otherwise we would have
σ ↪→ δ([ν−x2ρ2, ν

x2ρ2])oπ2, for some irreducible representation π2. Consequently,
σ ↪→ δ([ν−x+1ρ, νxρ]) o σ′′, and an application of Proposition 3.3 finishes the
proof.

The following technical result will be used several times in the paper:

Lemma 3.5. Let ρ ∈ Irr(GLnρ) denote a cuspidal unitarizable representation and
let a, b ∈ R be such that b − a is a nonnegative integer. Let σ ∈ Irr(Gn) be such
that µ∗(σ) contains an irreducible constituent of the form δ([νaρ, νbρ]) ⊗ π and
such that µ∗(σ) does not contain an irreducible constituent of the form νxρ⊗ π1,
for a ≤ x < b. Then there is an irreducible representation π2 such that σ is a
subrepresentation of δ([νaρ, νbρ]) o π2.

Proof. It follows at once that there is an irreducible cuspidal representation π1 ∈
Irr(Gn1) such that the Jacquet module of σ with respect to the appropriate
parabolic subgroup contains νbρ ⊗ νb−1ρ ⊗ · · · ⊗ νaρ ⊗ π1. Using cuspidality of
νbρ⊗ νb−1ρ⊗ · · · ⊗ νaρ⊗ π1 and [34, Corollary 6.2(3)], which holds for reductive
p-adic groups, we get that there is a representation π2 ∈ Irr(Gn2

) such that σ is
a subrepresentation of the induced representation νbρ × νb−1ρ × · · · × νaρ o π2.
By Lemma 2.5 there is an irreducible subquotient π′ of νbρ × νb−1ρ × · · · × νaρ
such that σ is a subrepresentation of π′ o π2. Since µ∗(σ) does not contain an
irreducible constituent of the form νxρ ⊗ π3, for a ≤ x < b, we directly obtain
π′ ∼= δ([νaρ, νbρ]). This ends the proof.

Definition 3.6. Let σ ∈ Irr(Gn) denote a discrete series. For an irreducible essen-
tially self-dual cuspidal unitarizable representation ρ of GLnρ , we write Jordρ(σ) =
{a : (a, ρ) ∈ Jord(σ)}. Let σcusp stand for the partial cuspidal support of σ. If
Jordρ(σ) 6= ∅ and a ∈ Jordρ(σ), we put a = max{b ∈ Jordρ(σ) : b < a}, if it
exists. The ε-function is defined on a subset D of Jord(σ)∪Jord(σ)×Jord(σ) such
that

• D ∩ Jord(σ) = {(x, ρ) ∈ Jord(σ) : x is even or Jordρ(σcusp) = ∅},

• D ∩ (Jord(σ) × Jord(σ)) = {((x, ρ1), (y, ρ2)) : ρ1 ∼= ρ2 and in Jordρ1(σ) we
have x = y }.
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For a ∈ Jordρ(σ) such that a is defined, we set

εσ((a , ρ), (a, ρ)) = 1

if there exists an irreducible representation π of some Gn′ such that

σ ↪→ δ([ν
a +1

2 ρ, ν
a−1
2 ρ]) o π. (4)

Otherwise, let
εσ((a , ρ), (a, ρ)) = −1.

In Lemmas 3.7, 3.8, 3.10 and Corollary 3.9, we let σ ∈ Irr(Gn) denote a
discrete series.

Using Lemmas 3.4 and 3.5, we obtain:

Lemma 3.7. Let (a, ρ) ∈ Jord(σ) be such that a is defined. Then εσ((a , ρ), (a, ρ))
= 1 if and only if there exists an irreducible representation σ′ such that

µ∗(σ) ≥ δ([ν
a +1

2 ρ, ν
a−1
2 ρ])⊗ σ′.

Let us prove another useful technical result:

Lemma 3.8. Let (2x+1, ρ) ∈ Jord(σ). Suppose that there is some y such that σ is
a subrepresentation of an induced representation of the form δ([νyρ, νxρ])o π, for
some irreducible representation π, and let ymin be the smallest such number. If π is
an irreducible representation such that σ is a subrepresentation of δ([νyminρ, νxρ])o
π, then π is a discrete series.

Proof. Suppose, on the contrary, that π is not a discrete series. By Corollary 2.4,
there are x1, y1 such that x1 − y1 ∈ Z and x1 + y1 ≤ 0 and irreducible representa-
tions ρ1, π1, such that π is a subrepresentation of δ([νy1ρ1, ν

x1ρ1])oπ1. By Lemma
2.5, there is an irreducible subquotient π2 of δ([νyminρ, νxρ]) × δ([νy1ρ1, ν

x1ρ1])
such that σ is a subrepresentation of π2 o π1. The square-integrability crite-
rion implies ρ ∼= ρ1 and x1 ≥ ymin − 1. It can now be easily seen that π2 ∼=
δ([νy1ρ, νxρ])× δ([νyminρ, νx1ρ]).

Using Lemma 2.5 again, we deduce that there is an irreducible representation
π3 ∈ R(G) such that σ is a subrepresentation of δ([νy1ρ, νxρ])oπ3 and y1 < ymin,
a contradiction.

We note the following consequence of Proposition 3.3 and Lemma 3.8:

Corollary 3.9. Let (2x + 1, ρ) ∈ Jord(σ). Suppose that there is some y, y ≤
0, such that σ is a subrepresentation of an induced representation of the form
δ([νyρ, νxρ]) o σ′, for some irreducible representation σ′, and let ymin denote the
smallest such number. Then (−2ymin + 1, ρ) ∈ Jord(σ).

Now we prove:
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Lemma 3.10. If εσ((a , ρ), (a, ρ)) = 1, π in (4) is an irreducible tempered subrep-
resentation of an induced representation of the form

δ([ν−
a −1

2 ρ, ν
a −1

2 ρ]) o σ1,

where σ1 ∈ Irr(Gn1
) is a discrete series such that Jord(σ1) = Jord(σ) \

{(a, ρ), (a , ρ)}. Therefore,

σ ↪→ δ([ν−
a −1

2 ρ, ν
a−1
2 ρ]) o σ1.

Furthermore, εσ((a , ρ), (a, ρ)) = 1 if and only if there is an irreducible representa-

tion π1 ∈ Irr(Gn2
) such that σ is a subrepresentation of δ([ν−

a −1
2 ρ, ν

a−1
2 ρ])o π1.

Proof. If π were a discrete series, Proposition 3.3 would give (a , ρ) /∈ Jord(σ), a
contradiction. Let us show that π is tempered. Otherwise, by Corollary 2.4, there
are x1, y1 such that x1 − y1 ∈ Z and x1 + y1 < 0, and irreducible representations
ρ1, π1, such that π is a subrepresentation of δ([νx1ρ1, ν

y1ρ1])oπ1. By Lemma 2.5,

there is an irreducible subquotient π′1 of δ([ν
a +1

2 ρ, ν
a−1
2 ρ])×δ([νx1ρ1, ν

y1ρ1]) such
that σ is a subrepresentation of π′1 o π1.

The square-integrability criterion for σ implies that δ([ν
a +1

2 ρ, ν
a−1
2 ρ]) ×

δ([νx1ρ1, ν
y1ρ1]) is reducible. Therefore Lemma 3.4 implies that ρ ∼= ρ1, y1 = a −1

2 ,

and π′1
∼= δ([νx1ρ, ν

a−1
2 ρ])oπ1, for x1 < −a −12 , which is impossible by Proposition

3.3 and Lemma 3.8.
So, π is tempered and one readily sees that it is a subrepresentation of an

induced representation of the form

δ([ν−
a −1

2 ρ, ν
a −1

2 ρ])× · · · × δ([ν−
a −1

2 ρ, ν
a −1

2 ρ]) o σ1, (5)

with σ1 ∈ Irr(Gn1
) discrete series.

Using Lemma 2.5 and the square-integrability criterion, we get that σ is a
subrepresentation of

δ([ν−
a −1

2 ρ, ν
a−1
2 ρ])× δ([ν−

a −1
2 ρ, ν

a −1
2 ρ])× · · · × δ([ν−

a −1
2 ρ, ν

a −1
2 ρ]) o σ1.

If δ([ν−
a −1

2 ρ, ν
a −1

2 ρ]) appears in (5) more than once, it follows that there is an

irreducible representation π′1 such that σ is a subrepresentation of δ([ν−
a −1

2 ρ,

ν
a −1

2 ρ]) o π′1, contradicting the square-integrability criterion. Thus, π is a sub-

representation of δ([ν−
a −1

2 ρ, ν
a −1

2 ρ]) o σ1.
This implies that Jord(σ1) = Jord(σ) \ {(a , ρ), (a, ρ)} and lemma is proved.

Let us recall the characterization of strongly positive discrete series (see Defi-
nition 2.2 for the definition), which can be deduced directly from [14, Theorem 4.6]
or from [19, Section 7]. We emphasize that, although representations of the GSpin
groups have not been studied in [14] and [19], all the proofs given in [14] and in
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[19, Section 7] can be carried to the odd GSpin situation without any change,
since they completely rely on the structural formula, classification of the strongly
positive discrete series, which is analogous to the one for the odd GSpin groups,
and well-known facts on the representation theory of general linear groups.

Proposition 3.11. Let σ ∈ Irr(Gn) denote a discrete series. Then σ is strongly
positive if and only if for all (a, ρ) ∈ Jord(σ) such that a is defined we have

εσ((a , ρ), (a, ρ)) = −1.

We also note

Theorem 3.12. Let σ ∈ Irr(Gn) denote a non-strongly positive discrete series.
Then there exist

• (a, ρ) ∈ Jord(σ) such that a is defined and εσ((a , ρ), (a, ρ)) = 1,

• a discrete series σ′ such that σ is a subrepresentation of δ([ν−
a −1

2 ρ, ν
a−1
2 ρ])

oσ′,

and one of the following holds:

(1) if there is a b ∈ Jordρ(σ
′) such that b ∈ Jordρ(σ

′) is defined and satisfies
εσ′((b , ρ), (b, ρ)) = 1, then a > b ,

(2) if there is a b ∈ Jordρ(σ
′) such that b ∈ Jordρ(σ

′) is defined and satisfies
εσ′((b , ρ), (b, ρ)) = 1, then a < b.

In particular, for a discrete series σ there exists an ordered n-tuple of discrete
series (σ1, σ2, . . . , σn), σi ∈ Irr(Gmi), such that

• σ1 is strongly positive,

• σn ∼= σ,

• for every i = 2, 3, . . . , n, there is (ai, ρi) ∈ Jord(σ) such that (ai) is defined,

σi is a subrepresentation of δ([ν−
(ai) −1

2 ρi, ν
ai−1

2 ρi]) o σi−1,

and one of the following holds:

(1) ai > aj for all j > i such that ρi ∼= ρj ,

(2) ai < aj for all j > i such that ρi ∼= ρj.

Proof. For a discrete series σ which is not strongly positive, there is an or-
dered pair (a, ρ) ∈ Jord(σ) such that a is defined and εσ((a , ρ), (a, ρ)) = 1.
By Lemma 3.10, there is a discrete series σ′′ such that σ is a subrepresentation of

δ([ν−
a −1

2 ρ, ν
a−1
2 ρ]) o σ′′.

For (b, ρ′) ∈ Jord(σ), ρ′ 6∼= ρ, such that b is defined, it follows directly from
Lemma 3.7 that εσ((b , ρ′), (b, ρ′)) = 1 if and only if εσ′′((b , ρ

′), (b, ρ′)) = 1. In the
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same way one can see that, for (b, ρ) ∈ Jord(σ) such that b is defined and either
b < a or b > a, εσ((b , ρ), (b, ρ)) = 1 if and only if εσ′′((b , ρ), (b, ρ)) = 1.

Now let ρ denote an irreducible cuspidal essentially self-dual unitarizable
representation such that Jordρ(σ) 6= ∅ and there is an a ∈ Jordρ(σ) such that
a is defined and εσ((a , ρ), (a, ρ)) = 1. Let S1 denote the set of all b ∈ Jordρ(σ)
such that b is defined and εσ((b , ρ), (b, ρ)) = 1. Taking either a = min(S1) or
a = max(S1), the rest of the proof follows from an inductive application of this
procedure, together with Propositions 3.3 and 3.11.

Suppose that σ ∈ R(G) is a strongly positive discrete series, with the partial
cuspidal support σcusp, and let ρ ∈ R(GL) denote an irreducible cuspidal unitary
representation such that some twists of ρ appear in the cuspidal support of σ. By
the classification of strongly positive discrete series [8, Theorem A], ρ is self-dual,
there exist unique positive half-integers a and b, and the unique strongly positive
discrete series representation σ′ without νaρ in the cuspidal support, such that σ
is the unique irreducible subrepresentation of δ([νaρ, νbρ])oσ′. Furthermore, there
is a non-negative integer k such that a + k = s, for s > 0 such that νsρ o σcusp
reduces. If k = 0, there are no twists of ρ appearing in the cuspidal support of σ′

and if k > 0 there exist unique b′ > b and the unique strongly positive discrete
series σ′′, which contains neither νaρ nor νa+1ρ in its cuspidal support, such that σ′

can be written as the unique irreducible subrepresentation of δ([νa+1ρ, νb
′
ρ])oσ′′.

Thus, we obtain that for a strongly positive discrete series σ ∈ R(G) there is
an ordered n-tuple of discrete series (σ1, σ2, . . . , σn), σi ∈ R(G) for i = 1, 2, . . . , n,
such that

• σ ∼= σn,

• σ1 is cuspidal,

• for every i = 2, 3, . . . , n, there is an irreducible self-dual cuspidal ρi ∈ R(GL)
and positive ai, bi, such that σi ↪→ δ([νaiρi, ν

biρi]) o σi−1.

Note that σ1 is the partial cuspidal support of σ.

Remark 3.13. Using the previous inductive description of the strongly positive
discrete series, Proposition 3.3 and Theorem 3.12 enable us to relate the Jordan
block of a discrete series σ with the Jordan block of its partial cuspidal support.
Now the Basic Assumption implies that Jordρ(σ) is finite.

We recall a result which can be obtained following the same lines as in [22,
Section 4]. We note that the results obtained in [22, Section 4] completely rely on
the structural formula and the definition of the Jordan block of a discrete series,
so can be directly applied to our situation.

Lemma 3.14. Let σ ∈ Irr(Gn) denote a discrete series and let ρ be an irreducible
essentially self-dual cuspidal unitarizable representation of some GLnρ . Also, let
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a, b denote positive integers, a < b, such that for x ∈ Jordρ(σ) we have x−a
2 , x−b2 ∈

Z and x 6∈ {a, a+ 1, . . . , b}. Then the induced representation

δ([ν−
a−1
2 ρ, ν

b−1
2 ρ]) o σ

contains two irreducible subrepresentations, which are mutually non-isomorphic.

Lemma 3.15. Let σ ∈ Irr(Gn) denote a discrete series. Let (a, ρ) ∈ Jord(σ) be
such that a is defined and a ≤ a−4. Then for every x such that a−x

2 is an integer
and a +4 ≤ x ≤ a, there exists a discrete series π such that σ is a subrepresentation

of δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) o π. Furthermore, if an irreducible constituent of the form

δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) ⊗ π′ appears in µ∗(σ), then π′ ∼= π and δ([ν

x−1
2 ρ, ν

a−1
2 ρ]) ⊗ π′

appears in µ∗(σ) with multiplicity one.

Proof. We divide the proof in a series of claims.

• Claim 1: There is an irreducible representation π such that σ is a subrepre-

sentation of δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) o π.

Similarly as in Theorem 3.12, letting σk+1 = σ, there are irreducible essen-
tially square-integrable representations δ1, . . . , δk, δi = δ([ν−xiρi, ν

yiρi]) ∈ R(GL),
xi, yi ≥ 0, for i = 1, . . . , k, and discrete series σ1, . . . , σk ∈ R(G), such that
σi+1 ↪→ δi o σi for i = 1, . . . , k, σ1 is strongly positive, in Jordρk(σ) we have
(2yk + 1) = 2xk + 1, and in Jordρi+1(σi) we have (2yi + 1) = 2xi + 1.

Obviously, σ is a subrepresentation of δk × δk−1 × · · · × δ1 o σ1, and either
(a, ρ) ∈ Jord(σ1), or there is a unique i ∈ {1, . . . , k} such that ρi ∼= ρ and a ∈
{2xi + 1, 2yi + 1} since (a, ρ) ∈ Jord(σ).

We consider several possibilities.

(i) If (a, ρ) ∈ Jord(σ1), it follows from the classification of strongly positive dis-
crete series [8, Theorem A] and [14, Theorem 5.3] that there is an irreducible

strongly positive representation σ′ such that σ1 ↪→ δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) o σ′.

Since 2xi + 1, 2yi + 1 ∈ Jordρi(σ), for i = 1, . . . , k we have

δi × δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) ∼= δ([ν

x−1
2 ρ, ν

a−1
2 ρ])× δi,

and it follows that σ is a subrepresentation of

δ([ν
x−1
2 ρ, ν

a−1
2 ρ])× δk × · · · × δ1 o σ′.

Now Lemma 2.5 implies the Claim 1 in this case.

(ii) If ρi ∼= ρ and a = 2yi + 1, for some i ∈ {1, 2, . . . , k}, we have an embedding

δi ↪→ δ([ν
x−1
2 ρ, ν

a−1
2 ρ])× δ([ν−xiρ, ν x−3

2 ρ]) and, since for j = i+ 1, . . . , k we

have δj × δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) ∼= δ([ν

x−1
2 ρ, ν

a−1
2 ρ]) × δj , we obtain that σ is a

subrepresentation of

δ([ν
x−1
2 ρ, ν

a−1
2 ρ])× δk × · · · × δi+1 × δ([ν−xiρ, ν

x−3
2 ρ])× δi−1 × · · · × δ1 o σ1.

Again, Lemma 2.5 implies the Claim 1.
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(iii) Suppose that ρi ∼= ρ and a = 2xi + 1, for some i ∈ {1, 2, . . . , k}. Obviously,
(a, ρ) /∈ Jord(σ1). Similarly as in the previous case we obtain that σ is an
irreducible subrepresentation of

δk×· · ·×δi+1×δ([ν−
x−3
2 ρ, νyiρ])×δi−1×· · ·×δ1×δ([ν−

a−1
2 ρ, ν−

x−1
2 ρ])oσ1.

Let us prove that the induced representation δ([ν−
a−1
2 ρ, ν−

x−1
2 ρ]) o σ1 is

irreducible. Following the same lines as in the proof of [8, Theorem 3.4],
using the self-duality of ρ, we obtain that in R(G) holds

δ([ν−
a−1
2 ρ, ν−

x−1
2 ρ]) o σ1 = δ([ν

x−1
2 ρ, ν

a−1
2 ρ]) o σ1.

Since x > 1, from the cuspidal support of the strongly positive representation,
which we have described before Remark 3.13, follows that an irreducible

tempered subquotient of δ([ν−
a−1
2 ρ, ν−

x−1
2 ρ])oσ1 would have to be strongly

positive since µ∗(δ([ν−
a−1
2 ρ, ν−

x−1
2 ρ]) o σ1) does not contain an irreducible

constituent of the form δ([νy1ρ, νy2ρ])⊗ π for y1 ≤ 0 and y1 + y2 ≥ 0. But, if

δ([ν−
a−1
2 ρ, ν−

x−1
2 ρ]) o σ1 contains a strongly positive discrete series, then it

can be directly seen from the cuspidal support of such a representation that

x− 2 ∈ Jordρ(σ1), a contradiction. Thus, δ([ν−
a−1
2 ρ, ν−

x−1
2 ρ])o σ1 does not

contain an irreducible tempered subquotient.

We write a non-tempered irreducible subquotient of δ([ν
x−1
2 ρ, ν

a−1
2 ρ])oσ1 in

the form L(δ′1, . . . , δ
′
l, τ), where δ′1, . . . , δ

′
l are irreducible essentially square-

integrable representations, δ′j ∈ Irr(GLn′j ), such that e(δ′1) ≤ · · · ≤ e(δ′l) < 0,

and τ ∈ Irr(Gn′′) is an irreducible tempered representation. Using Frobenius
reciprocity, together with the transitivity of Jacquet modules, we deduce that

µ∗(δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) o σ1) ≥ δ′1 ⊗ σ′ for some irreducible representation σ′

such that the Jacquet module of σ′ with respect to the appropriate parabolic
subgroup contains δ′2 ⊗ · · · ⊗ δ′l ⊗ τ .

The structural formula implies that there are x−3
2 ≤ i1 ≤ j1 ≤ a−1

2 and an
irreducible constituent π1 ⊗ σ′′ of µ∗(σ1) such that

δ′1 ≤ δ([ν−i1ρ, ν−
x−1
2 ρ])× δ([νj1+1ρ, ν

a−1
2 ρ])× π1

and

σ′ ≤ δ([νi1+1ρ, νj1ρ]) o σ′′.

Since e(δ′1) < 0 and σ1 is strongly positive, it follows at once that δ′1
∼=

δ([ν−i1ρ, ν−
x−1
2 ρ]) and σ′ ≤ δ([νi1+1ρ, ν

a−1
2 ρ]) o σ1.

If l ≥ 2, in the same way we obtain that δ′2
∼= δ([ν−i2ρ, ν−i1−1ρ]) for

some i2 ≥ i1 + 1, which is impossible since e(δ′1) ≤ e(δ′2). Thus, l = 1

and δ([νi1+1ρ, ν
a−1
2 ρ]) o σ1 contains a tempered subquotient σ′ = τ . It
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can be easily seen that this happens only if i1 = a−1
2 , so every irre-

ducible constituent of δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) o σ1 is isomorphic to its Langlands

quotient, which appears with multiplicity one. Consequently, the induced

representation δ([ν−
a−1
2 ρ, ν−

x−1
2 ρ]) o σ1 is irreducible and isomorphic to

δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) o σ1.

Since δj × δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) ∼= δ([ν

x−1
2 ρ, ν

a−1
2 ρ])× δj for j = 1, . . . , i− 1, i+

1, . . . , k and

δ([ν−
x−3
2 ρ, νyiρ])×δ([ν

x−1
2 ρ, ν

a−1
2 ρ]) ∼= δ([ν

x−1
2 ρ, ν

a−1
2 ρ])×δ([ν−

x−3
2 ρ, νyiρ]),

we obtain that σ is an irreducible subrepresentation of

δ([ν
x−1
2 ρ, ν

a−1
2 ρ])× δk × · · · × δi+1 × δ([ν−

x−3
2 ρ, νyiρ])× δi−1 × · · · × δ1 o σ1.

Now Lemma 2.5 implies that there is an irreducible representation π ∈ R(G)

such that σ is a subrepresentation of δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) o π.

• Claim 2: The representation π is a discrete series.

Suppose, on the contrary, that π is not a discrete series. By Corollary 2.4, there are
x′, y′, x′−y′ ∈ Z and x′+y′ ≤ 0, an irreducible cuspidal representation ρ′ ∈ R(GL),
and an irreducible representation π1 ∈ R(G), such that π is a subrepresentation
of

δ([νx
′
ρ′, νy

′
ρ′]) o π1.

Therefore, a discrete series σ is a subrepresentation of δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) ×

δ([νx
′
ρ′, νy

′
ρ′]) o π1. In the same way as in the proof of Lemma 3.8, we see that

ρ′ ∼= ρ, y′ = x−3
2 , and σ is a subrepresentation of δ([νx

′
ρ, ν

a−1
2 ρ]) o π1. Since

x′ ≤ −x−32 < −a −12 , this contradicts Corollary 3.9.

• Claim 3: If some irreducible constituent of the form δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) ⊗ π′

appears in µ∗(σ), then π′ ∼= π and δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) ⊗ π′ appears in µ∗(σ)

with multiplicity one.

Since σ is a subrepresentation of δ([ν
x−1
2 ρ, ν

a−1
2 ρ])oπ, it follows from Proposition

3.3 that Jordρ(σ) = Jordρ(π)∪{a}\{x−2} and, consequently, Jordρ(π)∩[x−1, a] ⊂
Jordρ(σ) ∩ [x− 1, a] \ {a} = ∅.

Let us determine all irreducible constituents of µ∗(δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) o π) of

the form δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) ⊗ π′. By the structural formula, there are i, j, x−1

2 ≤
i ≤ j ≤ a−1

2 and an irreducible constituent δ1 ⊗ π1 of µ∗(π) such that

δ([ν
x−1
2 ρ, ν

a−1
2 ρ]) ≤ δ([ν−iρ, ν−

x−1
2 ρ])× δ([νj+1ρ, ν

a−1
2 ρ])× δ1
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and

π′ ≤ δ([νi+1ρ, νjρ]) o π1.

Considering cuspidal supports, we have i = x−3
2 and δ1 = δ([ν

x−1
2 ρ, νjρ]).

From Lemma 3.4 and the description of Jordρ(π) we obtain that π1 ∼= π, so

j = x−3
2 . Thus, δ([ν

x−1
2 ρ, ν

a−1
2 ρ]) ⊗ π is a unique irreducible constituent of

µ∗(δ([ν
x−1
2 ρ, ν

a−1
2 ρ])o π) of the form δ([ν

x−1
2 ρ, ν

a−1
2 ρ])⊗ π′, and it appears there

with multiplicity one. This finishes the proof.

In a similar way as in the proof of the previous lemma, we also obtain:

Lemma 3.16. Let σ ∈ Irr(Gn) denote a discrete series. Let (a, ρ) ∈ Jord(σ) such
that a is not defined. Also, suppose that µ∗(σ) contains an irreducible constituent

of the form ν
a−1
2 ρ ⊗ σ′. Then there exists a discrete series π such that σ is a

subrepresentation of

δ([ν
a−1
2 −b

a−1
2 c+1ρ, ν

a−1
2 ρ]) o π,

where ba−12 c stands for the largest integer which is not greater than a−1
2 . Fur-

thermore, if an irreducible constituent of the form δ([ν
a−1
2 −b

a−1
2 c+1ρ, ν

a−1
2 ρ])⊗π′

appears in µ∗(σ), then π′ ∼= π and such a constituent appears in µ∗(σ) with mul-
tiplicity one. Also, µ∗(σ) does not contain an irreducible constituent of the form

δ([νxρ, ν
a−1
2 ρ])⊗ π for x < 0.

Theorem 3.17. Let σ ∈ Irr(Gn) denote a non-strongly positive discrete series.
Let (a, ρ) ∈ Jord(σ) be such that a is defined and εσ((a , ρ), (a, ρ)) = 1. Also,
let σ′ denote a discrete series such that σ is a subrepresentation of the induced
representation

δ([ν−
a −1

2 ρ, ν
a−1
2 ρ]) o σ′. (6)

Then the induced representation (6) contains exactly two irreducible subrepresen-
tations. Moreover, these representations are square-integrable and mutually non-
isomorphic.

Proof. By Lemmas 3.10 and 3.14, the induced representation (6) contains ex-
actly two irreducible subrepresentations which are mutually non-isomorphic. Let
us show the square-integrability of the irreducible subrepresentations of (6). To
achieve this, we follow an approach introduced in [24]. First we prove that
there are no irreducible tempered subquotients of the induced representation
(6) which are not square-integrable. On the contrary, suppose that there is
some irreducible tempered but not square-integrable representation τ such that

τ ≤ δ([ν− a −1
2 ρ, ν

a−1
2 ρ])o σ′. Then there is a cuspidal unitarizable representation

ρ′ ∈ Irr(GL), a non-negative integer b and a tempered representation τ ′ ∈ Irr(Gn′)
such that
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τ ↪→ δ([ν−bρ′, νbρ′]) o τ ′.

Frobenius reciprocity shows that µ∗(τ) ≥ δ([ν−bρ′, νbρ′])⊗ τ ′. Thus,

µ∗(δ([ν−
a −1

2 ρ, ν
a−1
2 ρ]) o σ′) ≥ δ([ν−bρ′, νbρ′])⊗ τ ′.

Since σ′ is a discrete series, using the structural formula and Lemma 3.4 one
readily sees that ρ′ ∼= ρ and b = a −1

2 . Also, τ ′ is an irreducible subquotient of

δ([ν
a +1

2 ρ, ν
a−1
2 ρ])oσ′. Similarly as in the previous sentence, it can be easily seen

that µ∗(δ([ν
a +1

2 ρ, ν
a−1
2 ρ])oσ′) does not contain an irreducible constituent of the

form δ([ν−b
′
ρ′′, νb

′
ρ′′])⊗ π, so τ ′ has to be a discrete series.

Using Theorem 3.12 we deduce that there are (a1, ρ1), (b1, ρ1), (a2, ρ2),
(b2, ρ2), . . . , (ak, ρk), (bk, ρk) ∈ Jord(σ′) and a strongly positive discrete series
σ1 ∈ R(G) such that the cuspidal support of σ′ equals

k⋃
i=1

[−ν
ai−1

2 ρi, ν
bi−1

2 ρi] ∪ [σ1],

where [σ1] stands for the cuspidal support of σ1. Since an analogous result holds

for a discrete series subquotient τ ′ of δ([ν
a +1

2 ρ, ν
a−1
2 ρ]) o σ′, we deduce that

a ∈ Jordρ(σ
′). On the other hand, Proposition 3.3 implies that Jord(σ′) does

not contain (a , ρ) since σ ↪→ δ([ν−
a +1

2 ρ, ν
a−1
2 ρ]) o σ′. Therefore the induced

representation δ([ν−
a +1

2 ρ, ν
a−1
2 ρ]) o σ′ does not contain an irreducible tempered

subquotient.
Let us now prove that the only irreducible non-tempered subquotient of

the induced representation (6) is its Langlands quotient. Let us denote an ir-
reducible non-tempered subquotient of (6) by π and write π ∼= L(δ1, . . . , δk, τ),
where δ1, . . . , δk are irreducible essentially square-integrable representations of
some GLn1

, . . ., GLnk such that e(δ1) ≤ · · · ≤ e(δk) < 0, and τ ∈ Irr(Gn′) is
a tempered representation. Write δi = δ([νaiρi, ν

biρi]).
Using Frobenius reciprocity and the transitivity of Jacquet modules, we see

that
µ∗(δ([ν−

a −1
2 ρ, ν

a−1
2 ρ]) o σ′) ≥ δ1 ⊗ π′,

for some irreducible representation π′ such that its Jacquet module with respect
to the appropriate parabolic subgroup contains δ2 ⊗ · · · ⊗ δk ⊗ τ .

It follows from the structural formula that there are i, j such that −a +1
2 ≤

i ≤ j ≤ a−1
2 and an irreducible constituent δ ⊗ π′′ of µ∗(σ′) such that

δ([νa1ρ1, ν
b1ρ1])(= δ1) ≤ δ([ν−iρ, ν

a −1
2 ρ])× δ([νj+1ρ, ν

a−1
2 ρ])× δ

and

π′ ≤ δ([νi+1ρ, νjρ]) o π′′.
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Since e(δ1) = a1+b1
2 < 0 and σ′ is square-integrable, it follows that ρ1 ∼= ρ. From

the description of Jordρ(σ
′) and Lemma 3.4, we obtain that m∗(δ) does not contain

an irreducible constituent of the form νxρ⊗δ′ for a +1
2 ≤ x ≤ a−1

2 . Thus, j = a−1
2 ,

a1 = −i, i > a −1
2 , b1 = a −1

2 , and

π′ ≤ δ([νi+1ρ, ν
a−1
2 ρ]) o σ′.

Suppose that i < a−1
2 . Since i > a −1

2 , in the first part of the proof we have seen

that the induced representation δ([νi+1ρ, ν
a−1
2 ρ])oσ′ does not contain a tempered

subquotient, so k ≥ 2. Now, repeating the same procedure as for δ1, we deduce
that δ2 is of the form δ([νi

′
ρ, ν−i−1ρ]), for some i′ ≤ −i − 1, which is impossible

since e(δ1) ≤ e(δ2). Thus, i = a−1
2 and the only non-tempered subquotient of

the induced representation (6) is its Langlands quotient, which appears in the
composition series of (6) with multiplicity one. This proves the theorem.

Now we prove a result which happens to be crucial for our classification.

Theorem 3.18. Let σ ∈ Irr(Gn) denote a non-strongly positive discrete series.
Let (a, ρ) ∈ Jord(σ) be such that a is defined and εσ((a , ρ), (a, ρ)) = 1. Also, let
σ′ denote a discrete series such that

σ ↪→ δ([ν−
a −1

2 ρ, ν
a−1
2 ρ]) o σ′.

Suppose that (b, ρ′) ∈ Jord(σ′) is such that b is defined. If ρ′ 6∼= ρ, we have
εσ′((b , ρ

′), (b, ρ′)) = εσ((b , ρ′), (b, ρ′)). Also, if either b < a or b > a, then
εσ′((b , ρ), (b, ρ)) = εσ((b , ρ), (b, ρ)). If b < a and a < b, we have

εσ′((b , ρ), (b, ρ)) = εσ((b , ρ), (a , ρ)) · εσ((a, ρ), (b, ρ)).

Proof. It follows from Lemma 3.7 and the structural formula that for (b, ρ′) ∈
Jord(σ), ρ′ 6∼= ρ, such that b is defined, we have εσ((b , ρ′), (b, ρ′)) = 1 if and
only if εσ′((b , ρ

′), (b, ρ′)) = 1. Also, for (b, ρ) ∈ Jord(σ) such that b is defined and
either b < a or b > a, in the same way one can easily see that εσ((b , ρ), (b, ρ)) = 1
if and only if εσ′((b , ρ), (b, ρ)) = 1.

Let us describe the remaining case which is the most non-trivial case.
Let us change the notation for simplicity. In the remainder of the proof,

underbar always means underbar in Jord(σ), not in Jord(σ′). Let (b, ρ) ∈ Jord(σ)
be such that b is defined. Also, assume that a ∈ Jordρ(σ) is such that a = (b )
and εσ((a, ρ), (b , ρ)) = 1. Suppose that a is defined and let σ′ denote a discrete
series such that σ is a subrepresentation of

δ([ν−
a−1
2 ρ, ν

b −1
2 ρ]) o σ′.

Note that we are in the case a < a < b < b.
Then a , b ∈ Jordρ(σ

′) and Jordρ(σ
′) ∩ [a + 1, b− 1] = ∅.
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Following exactly the same lines as in [22, Section 4], which uses only the
standard calculations of the Jacquet modules by the structural formula, we deduce
that in R(G) we have

δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]) o σ′ = τ1 + τ2,

for mutually non-isomorphic tempered representations τ1 and τ2.
We split the rest of the proof in six claims.

• Claim 1: There exists a unique α ∈ {1, 2} such that σ is a subrepresentation

of δ([ν
a+1
2 ρ, ν

b −1
2 ρ]) o τα.

Let us prove the Claim 1. By Lemma 3.10, there is an irreducible tempered sub-
representation τ of

δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]) o σ′.

such that σ is a subrepresentation of

δ([ν
a+1
2 ρ, ν

b −1
2 ρ]) o τ.

By the Frobenius reciprocity, µ∗(σ) contains δ([ν
a+1
2 ρ, ν

b −1
2 ρ])⊗ τ .

Theorem 3.17 implies that there is another discrete series subrepresentation

of δ([ν−
a−1
2 ρ, ν

b −1
2 ρ]) o σ′, which we denote by σ1. In the same way as for σ we

conclude that there is an irreducible tempered representation τ ′ such that µ∗(σ1)

contains δ([ν
a+1
2 ρ, ν

b −1
2 ρ])⊗ τ ′.

It can be seen in the same way as in the last part of the proof of Lemma 3.15

that δ([ν
a+1
2 ρ, ν

b −1
2 ρ])⊗τ1 and δ([ν

a+1
2 ρ, ν

b −1
2 ρ])⊗τ2 are the only irreducible con-

stituents of the form δ([ν
a+1
2 ρ, ν

b −1
2 ρ])⊗π appearing in µ∗(δ([ν−

a−1
2 ρ, ν

b −1
2 ρ])o

σ′), and both of them appear with multiplicity one. Thus, there is a unique
α ∈ {1, 2} such that τ ∼= τα.

• Claim 2: There exists a unique β ∈ {1, 2} such that µ∗(τβ) contains

δ([ν
a +1

2 ρ, ν
a−1
2 ρ])× δ([ν

a +1
2 ρ, ν

a−1
2 ρ])⊗ δ([ν−

a −1
2 ρ, ν

a −1
2 ρ]) o σ′. (7)

Furthermore, τβ ↪→ δ([ν
a +1

2 ρ, ν
a−1
2 ρ]) × δ([ν

a +1
2 ρ, ν

a−1
2 ρ]) × δ([ν−

a −1
2 ρ,

ν
a −1

2 ρ]) o σ′.

Since a ∈ Jordρ(σ
′), it follows from the definition of the Jordan block that

δ([ν−
a −1

2 ρ, ν
a −1

2 ρ]) o σ′ is irreducible. Now we prove the Claim 2. Suppose that

δ([ν
a +1

2 ρ, ν
a−1
2 ρ])× δ([ν a +1

2 ρ, ν
a−1
2 ρ])⊗π is an irreducible constituent appearing

in µ∗(δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]) o σ′). Then there are i, j such that −a+1

2 ≤ i ≤ j ≤
a−1
2

and an irreducible constituent δ ⊗ π′ of µ∗(σ′) such that

δ([ν
a +1

2 ρ, ν
a−1
2 ρ])× δ([ν

a +1
2 ρ, ν

a−1
2 ρ]) ≤ δ([ν−iρ, ν

a−1
2 ρ])× δ([νj+1ρ, ν

a−1
2 ρ])× δ
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and

π ≤ δ([νi+1ρ, νjρ]) o π′.

From the description of Jordρ(σ
′) and Lemma 3.4 we obtain that m∗(δ) does not

contain an irreducible constituent of the form νxρ⊗ δ′ for a +1
2 ≤ x ≤ a−1

2 . Thus,
i = −a +1

2 , j = a −1
2 , and π′ ∼= σ′.

Thus, (7) is a unique irreducible constituent of µ∗(δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]) o σ′)

of the form δ([ν
a +1

2 ρ, ν
a−1
2 ρ]) × δ([ν a +1

2 ρ, ν
a−1
2 ρ]) ⊗ π, and appears there with

multiplicity one. This proves the first statement of Claim 2.
Let us also prove that µ∗(τβ) contains (7) if and only if τβ is a subrepresen-

tation of

δ([ν
a +1

2 ρ, ν
a−1
2 ρ])× δ([ν

a +1
2 ρ, ν

a−1
2 ρ])× δ([ν−

a −1
2 ρ, ν

a −1
2 ρ]) o σ′.

If µ∗(τβ) contains (7), the transitivity of the Jacquet modules implies that the
Jacquet module of τβ with respect to the appropriate parabolic subgroup contains

ν
a−1
2 ρ⊗ ν

a−3
2 ρ⊗ · · · ⊗ ν

a +1
2 ρ⊗

ν
a−1
2 ρ⊗ ν

a−3
2 ρ⊗ · · · ⊗ ν

a +1
2 ρ⊗ δ([ν−

a −1
2 ρ, ν

a −1
2 ρ]) o σ′.

Now [34, Corollary 6.2(3)], which holds for reductive groups, implies that there is
an irreducible representation π1 such that τβ is a subrepresentation of

ν
a−1
2 ρ× ν

a−3
2 ρ× · · · × ν

a +1
2 ρ× ν

a−1
2 ρ× ν

a−3
2 ρ× · · · × ν

a +1
2 ρo π1.

From Lemma 2.5 we obtain that there is an irreducible subquotient π2 of

ν
a−1
2 ρ× ν

a−3
2 ρ× · · · × ν

a +1
2 ρ× ν

a−1
2 ρ× ν

a−3
2 ρ× · · · × ν

a +1
2 ρ

such that τβ is a subrepresentation of π2 o π1. Since µ∗(τβ) does not contain an
irreducible constituent of the form νxρ ⊗ π for a +1

2 ≤ x ≤ a−3
2 , we easily obtain

that π2 ∼= δ([ν
a +1

2 ρ, ν
a−1
2 ρ])× δ([ν a +1

2 ρ, ν
a−1
2 ρ]). Frobenius reciprocity gives

µ∗(τβ) ≥ δ([ν
a +1

2 ρ, ν
a−1
2 ρ])× δ([ν

a +1
2 ρ, ν

a−1
2 ρ])⊗ π1,

so π1 ∼= δ([ν−
a −1

2 ρ, ν
a −1

2 ρ]) o σ′.
The other direction is an immediate consequence of the Frobenius reciprocity.

• Claim 3: There exists a unique γ ∈ {1, 2} such that µ∗(τγ) contains an

irreducible constituent of the form δ([ν
a+1
2 ρ, ν

b−1
2 ρ])⊗π. Furthermore, τγ ↪→

δ([ν
a+1
2 ρ, ν

b−1
2 ρ]) o π.

Let us first determine all irreducible constituents of the form δ([ν
a+1
2 ρ, ν

b−1
2 ρ])⊗π

appearing in µ∗(δ([ν−
a−1
2 ρ, ν

a−1
2 ρ])o σ′). By the structural formula, there are i, j
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such that −a+1
2 ≤ i ≤ j ≤

a−1
2 and an irreducible constituent δ⊗π′ of µ∗(σ′) such

that

δ([ν
a+1
2 ρ, ν

b−1
2 ρ]) ≤ δ([ν−iρ, ν

a−1
2 ρ])× δ([νj+1ρ, ν

a−1
2 ρ])× δ

and

π ≤ δ([νi+1ρ, νjρ]) o π′.

Considering cuspidal supports, it follows at once that i = −a+1
2 , j = a−1

2

and δ ∼= δ([ν
a+1
2 ρ, ν

b−1
2 ρ]). Lemma 3.15 implies that π′ is a discrete series and

δ([ν
a+1
2 ρ, ν

b−1
2 ρ])⊗ π′ appears in µ∗(σ′) with multiplicity one. Also, from Lemma

3.15 follows that σ′ is a subrepresentation of δ([ν
a+1
2 ρ, ν

b−1
2 ρ])oπ′, so Proposition

3.3 implies that a ∈ Jordρ(π
′). Consequently, δ([ν−

a−1
2 ρ, ν

a−1
2 ρ])oπ′ is irreducible

and π = δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]) o π′.

Thus, δ([ν
a+1
2 ρ, ν

b−1
2 ρ])⊗δ([ν− a−1

2 ρ, ν
a−1
2 ρ])oπ′ is a unique irreducible con-

stituent of µ∗(δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]) o σ′) of the form δ([ν

a+1
2 ρ, ν

b−1
2 ρ]) ⊗ π, and it

appears there with multiplicity one.
In the same way as in the proof of Claim 2 one can prove that µ∗(τγ) contains

δ([ν
a+1
2 ρ, ν

b−1
2 ρ])⊗π if and only if τγ is a subrepresentation of δ([ν

a+1
2 ρ, ν

b−1
2 ρ])oπ.

• Claim 4: εσ((a , ρ), (a, ρ)) = 1 if and only if α = β.

Suppose that εσ((a , ρ), (a, ρ)) = 1. Using Lemma 2.5 and the description of
Jordρ(σ), we obtain the following embeddings:

σ ↪→ δ([ν
a +1

2 ρ, ν
a−1
2 ρ]) o π1

σ ↪→ δ([ν
a +1

2 ρ, ν
b −1

2 ρ]) o π2

σ ↪→ δ([ν
a+1
2 ρ, ν

b −1
2 ρ]) o τα, (8)

for some irreducible representations π1 and π2 in R(G).
Using Frobenius reciprocity and the structural formula, we conclude that

µ∗(π2) contains an irreducible constituent of the form δ([ν
a +1

2 ρ, ν
a−1
2 ρ])⊗ π′2. In

the same way as in the last part of the proof of Claim 2 we deduce that there
is an irreducible representation π ∈ R(G) such that π2 is a subrepresentation of

δ([ν
a +1

2 ρ, ν
a−1
2 ρ]) o π.

Using the embedding σ ↪→ δ([ν
a +1

2 ρ, ν
b −1

2 ρ]) o π2 and the Frobenius reci-

procity, we get that µ∗(σ) ≥ δ([ν a +1
2 ρ, ν

b −1
2 ρ])×δ([ν a +1

2 ρ, ν
a−1
2 ρ])⊗π. Note that

the induced representation δ([ν
a +1

2 ρ, ν
b −1

2 ρ]) × δ([ν a +1
2 ρ, ν

a−1
2 ρ]) is irreducible

by [37, Theorem 4.2].
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It follows from (8) and the structural formula that there are i, j such that
a−1
2 ≤ i ≤ j ≤

b −1
2 and an irreducible constituent δ′ ⊗ π′ of µ∗(τα) such that

δ([ν
a +1

2 ρ, ν
b −1

2 ρ])× δ([ν
a +1

2 ρ, ν
a−1
2 ρ])

≤ δ([ν−iρ, ν−
a+1
2 ρ])× δ([νj+1ρ, ν

b −1
2 ρ])× δ′.

Obviously, i = a−1
2 . Since τα is a subrepresentation of δ([ν−

a−1
2 ρ, ν

a−1
2 ρ])oσ′, the

fact that a, a + 1, · · · , b /∈ Jordρ(σ
′) and Lemma 3.4 imply that m∗(δ′) does not

contain an irreducible constituent of the form νxρ⊗ π′′ for a+1
2 ≤ x ≤

b −1
2 .

Consequently, j = a−1
2 and δ′ ∼= δ([ν

a +1
2 ρ, ν

a−1
2 ρ]) × δ([ν a +1

2 ρ, ν
a−1
2 ρ]). It

follows that µ∗(τα) contains an irreducible constituent of the form

δ([ν
a +1

2 ρ, ν
a−1
2 ρ])× δ([ν

a +1
2 ρ, ν

a−1
2 ρ])⊗ π

and Claim 2 implies α = β.
Conversely, suppose that α = β. Using Claims 1 and 2, we obtain that σ is a

subrepresentation of

δ([ν
a+1
2 ρ, ν

b −1
2 ρ])× δ([ν

a +1
2 ρ, ν

a−1
2 ρ])× δ([ν

a +1
2 ρ, ν

a−1
2 ρ])×

δ([ν−
a −1

2 ρ, ν
a −1

2 ρ]) o σ′.

By Lemma 2.5, there is an irreducible subquotient π of

δ([ν
a+1
2 ρ, ν

b −1
2 ρ])× δ([ν

a +1
2 ρ, ν

a−1
2 ρ])× δ([ν

a +1
2 ρ, ν

a−1
2 ρ]) (9)

such that σ is a subrepresentation of π × δ([ν− a −1
2 ρ, ν

a −1
2 ρ]) o σ′. It is an easy

combinatorial exercise to see that the only irreducible subquotients of (9) are

δ([ν
a +1

2 ρ, ν
a−1
2 ρ])× δ([ν

a +1
2 ρ, ν

b −1
2 ρ])

and

L(δ([ν
a +1

2 ρ, ν
a−1
2 ρ]), δ([ν

a +1
2 ρ, ν

a−1
2 ρ]), δ([ν

a+1
2 ρ, ν

b −1
2 ρ])).

In both cases we obtain that there is an irreducible representation π1 ∈ R(GL)

such that π is a subrepresentation of δ([ν
a +1

2 ρ, ν
a−1
2 ρ])× π1.

From
σ ↪→ π × δ([ν−

a −1
2 ρ, ν

a −1
2 ρ]) o σ′

and Lemma 2.5 we get that there is also an irreducible representation π2 ∈
R(G) such that σ is a subrepresentation of δ([ν

a +1
2 ρ, ν

a−1
2 ρ])× π2. Consequently,

εσ((a , ρ), (a, ρ)) = 1.

• Claim 5: εσ((b , ρ), (b, ρ)) = 1 if and only if α = γ.
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If εσ((b , ρ), (b, ρ)) = 1, by Lemma 3.10 there is a discrete series σ′′

such that µ∗(σ) ≥ δ([ν−
b −1

2 ρ, ν
b−1
2 ρ]) ⊗ σ′′. Since σ is a subrepresentation of

δ([ν
a+1
2 ρ, ν

b −1
2 ρ]) o τα, using the structural formula, together with the definition

of τα, we conclude that µ∗(τα) contains an irreducible constituent of the form

δ([νxρ, ν
b−1
2 ρ]) ⊗π1, for x ≤ 0. The transitivity of Jacquet modules now implies

that µ∗(τα) contains an irreducible constituent of the form δ([ν
a+1
2 ρ, ν

b−1
2 ρ])⊗ π,

and the Claim 3 implies α = γ.
Conversely, suppose that α = γ. Then the Jacquet module of σ with respect

to the appropriate parabolic subgroup contains an irreducible constituent of the
form

δ([ν
a+1
2 ρ, ν

b −1
2 ρ])⊗ δ([ν

a+1
2 ρ, ν

b−1
2 ρ])⊗ π.

By the transitivity of Jacquet modules, there is an irreducible constituent δ⊗π in
µ∗(σ) such that m∗(δ) contains

δ([ν
a+1
2 ρ, ν

b −1
2 ρ])⊗ δ([ν

a+1
2 ρ, ν

b−1
2 ρ]).

Since σ is a subrepresentation of δ([ν−
a−1
2 ρ, ν

b −1
2 ρ]) o σ′, we obtain that there

are i, j such that −a+1
2 ≤ i ≤ j ≤ b −1

2 and an irreducible constituent δ′ ⊗ π′ of
µ∗(σ′) such that

δ ≤ δ([ν−iρ, ν
a−1
2 ρ])× δ([νj+1ρ, ν

b −1
2 ρ])× δ′.

Considering cuspidal supports of δ, obviously, i = −a+1
2 . Since b 6∈ Jordρ(σ

′),
a < a, and b ∈ Jordρ(σ

′), using Lemma 3.4 we deduce that j = a−1
2 and δ′ ∼=

δ([ν
a+1
2 ρ, ν

b−1
2 ρ]). It follows that

δ ∼= δ([ν
a+1
2 ρ, ν

b −1
2 ρ])×δ([ν

a+1
2 ρ, ν

b−1
2 ρ]) ∼= δ([ν

a+1
2 ρ, ν

b−1
2 ρ])×δ([ν

a+1
2 ρ, ν

b −1
2 ρ]).

Using Frobenius reciprocity and the transitivity of Jacquet modules, we get that

µ∗(σ) contains an irreducible constituent of the form δ([ν
b +1

2 ρ, ν
b−1
2 ρ]) ⊗ π′, so

εσ((b , ρ), (b, ρ)) = 1.

• Claim 6: εσ′((a , ρ), (b, ρ)) = 1 if and only if β = γ.

By Lemma 3.15, there is a unique discrete series σ′′ such that σ′ is a subrepre-

sentation of δ([ν
a+1
2 ρ, ν

b−1
2 ρ]) o σ′′. Thus, every irreducible subrepresentation of

δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]) o σ′ is also a subrepresentation of

δ([ν−
a−1
2 ρ, ν

a−1
2 ρ])× δ([ν

a+1
2 ρ, ν

b−1
2 ρ]) o σ′′,

and in R(G) we have

δ([ν−
a−1
2 ρ, ν

a−1
2 ρ])× δ([ν

a+1
2 ρ, ν

b−1
2 ρ]) o σ′′ =

δ([ν−
a−1
2 ρ, ν

b−1
2 ρ]) o σ′′ + L(δ([ν−

a−1
2 ρ, ν

a−1
2 ρ]), δ([ν

a+1
2 ρ, ν

b−1
2 ρ])) o σ′′.

We split the proof of Claim 6 in three sub-claims.
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• Sub-claim 1: Each of the induced representations

δ([ν−
a−1
2 ρ, ν

b−1
2 ρ]) o σ′′

and

L(δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]), δ([ν

a+1
2 ρ, ν

b−1
2 ρ])) o σ′′

contains exactly one irreducible tempered subrepresentation of

δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]) o σ′.

Using the structural formula and the square-integrability criterion for σ′′,

we deduce that if µ∗(δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]) × δ([ν

a+1
2 ρ, ν

b−1
2 ρ]) o σ′′) contains

δ([ν−
a−1
2 ρ, ν

a−1
2 ρ])⊗σ′, then σ′ is an irreducible subquotient of δ([ν

a+1
2 ρ, ν

b−1
2 ρ])o

σ′′. In the same way we obtain that µ∗(δ([ν−
a−1
2 ρ, ν

a−1
2 ρ])×δ([ν a+1

2 ρ, ν
b−1
2 ρ])oσ′′)

contains δ([ν−
a−1
2 ρ, ν

a−1
2 ρ])⊗ δ([ν a+1

2 ρ, ν
b−1
2 ρ]) o σ′′ with multiplicity two.

It follows from Lemma 3.15 that σ′ appears with multiplicity one in the

composition series of δ([ν
a+1
2 ρ, ν

b−1
2 ρ]) o σ′′. Thus, µ∗(δ([ν−

a−1
2 ρ, ν

a−1
2 ρ]) ×

δ([ν
a+1
2 ρ, ν

b−1
2 ρ]) o σ′′) contains δ([ν−

a−1
2 ρ, ν

a−1
2 ρ])⊗ σ′ with multiplicity two.

Repeating the same arguments, we see that µ∗(δ([ν−
a−1
2 ρ, ν

b−1
2 ρ])oσ′′) con-

tains δ([ν−
a−1
2 ρ, ν

a−1
2 ρ])⊗ σ′ with multiplicity one. This proves Sub-claim 1.

• Sub-claim 2: τγ is contained in δ([ν−
a−1
2 ρ, ν

b−1
2 ρ]) o σ′′, but τ3−γ is not.

Lemma 3.4 and the fact that a ∈ Jordρ(σ
′′) and a + 2, · · · , b /∈ Jordρ(σ

′′)

imply that the induced representation δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]) o σ′′ is irreducible and

µ∗(σ′′) does not contain irreducible constituents of the form νxρ⊗π for a+1
2 ≤ x ≤

b−1
2 . Therefore, it follows from the structural formula that µ∗(δ([ν−

a−1
2 ρ, ν

a−1
2 ρ])×

δ([ν
a+1
2 ρ, ν

b−1
2 ρ]) o σ′′) contains a unique irreducible constituent of the form

δ([ν
a+1
2 ρ, ν

b−1
2 ρ]) ⊗ π , which appears there with multiplicity one, and such an

irreducible constituent is obviously also contained in µ∗(δ([ν−
a−1
2 ρ, ν

b−1
2 ρ])o σ′′).

We note that π ∼= δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]) o σ′′.

Thus, an irreducible tempered subrepresentation τ of δ([ν−
a−1
2 ρ, ν

a−1
2 ρ])oσ′

contains an irreducible representation of the form δ([ν
a+1
2 ρ, ν

b−1
2 ρ]) ⊗ π in the

Jacquet module with respect to the appropriate parabolic subgroup if and only if

τ is contained in δ([ν−
a−1
2 ρ, ν

b−1
2 ρ]) o σ′′. This proves Sub-claim 2.

• Sub-claim 3: εσ′((a , ρ), (b, ρ)) = 1 if and only if τβ is contained in

δ([ν−
a−1
2 ρ, ν

b−1
2 ρ]) o σ′′.

Note that Sub-claim 2 and 3 imply Claim 6 since τβ is contained in δ([ν−
a−1
2 ρ,

ν
b−1
2 ρ]) o σ′′ if and only if β = τ . We now prove Sub-claim 3. Suppose
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that εσ′((a , ρ), (b, ρ)) = 1. Since δ([ν−
a −1

2 ρ, ν
a −1

2 ρ]) o σ′ is irreducible and

εσ′((a , ρ), (b, ρ)) = 1, it follows that µ∗(δ([ν−
a −1

2 ρ, ν
a −1

2 ρ])oσ′) contains an irre-

ducible constituent of the form δ([ν
a +1

2 ρ, ν
b−1
2 ρ])⊗π1. Thus, the Jacquet module

of τβ with respect to the appropriate parabolic subgroup contains

δ([ν
a +1

2 ρ, ν
a−1
2 ρ])× δ([ν

a +1
2 ρ, ν

a−1
2 ρ])⊗ δ([ν

a +1
2 ρ, ν

b−1
2 ρ])⊗ π1.

The transitivity of Jacquet modules implies that there is an irreducible constituent
δ1 ⊗ π1 in µ∗(τβ) such that m∗(δ1) contains

δ([ν
a +1

2 ρ, ν
a−1
2 ρ])× δ([ν

a +1
2 ρ, ν

a−1
2 ρ])⊗ δ([ν

a +1
2 ρ, ν

b−1
2 ρ]). (10)

Since τβ is a subrepresentation of δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]) o σ′, it follows from the

structural formula that there are i, j such that −a+1
2 ≤ i ≤ j ≤ a−1

2 and an
irreducible constituent δ2 ⊗ π2 of µ∗(σ′) such that

δ1 ≤ δ([ν−iρ, ν
a−1
2 ρ])× δ([νj+1ρ, ν

a−1
2 ρ])× δ2.

By Lemma 3.4 and the transitivity of Jacquet modules, we get thatm∗(δ2) does not
contain an irreducible constituent of the form νxρ⊗ π such that a +1

2 ≤ x ≤ a−1
2

since a +2, · · · , a /∈ Jordρ(σ′). Since m∗(δ([ν−iρ, ν
a−1
2 ρ])×δ([νj+1ρ, ν

a−1
2 ρ])×δ2)

contains the irreducible constituent (10), we deduce i = −a +1
2 and j = a −1

2 . It

directly follows that δ2 ∼= δ([ν
a +1

2 ρ, ν
b−1
2 ρ]) and, consequently,

δ1 ∼= δ([ν
a +1

2 ρ, ν
a−1
2 ρ])× δ([ν

a +1
2 ρ, ν

a−1
2 ρ])× δ([ν

a +1
2 ρ, ν

b−1
2 ρ])

∼= δ([ν
a +1

2 ρ, ν
b−1
2 ρ])× δ([ν

a +1
2 ρ, ν

a−1
2 ρ])× δ([ν

a +1
2 ρ, ν

a−1
2 ρ]).

Using the Frobenius reciprocity and the transitivity of Jacquet modules again, we
conclude that µ∗(τβ) contains an irreducible constituent of the form

δ([ν
a+1
2 ρ, ν

b−1
2 ρ])⊗ π.

Consequently, β = γ and τβ is contained in δ([ν−
a−1
2 ρ, ν

b−1
2 ρ])oσ′′, by Sub-claim

2.
Conversely, let us assume that τβ is contained in δ([ν−

a−1
2 ρ, ν

b−1
2 ρ]) o σ′′.

Thus, µ∗(δ([ν−
a−1
2 ρ, ν

b−1
2 ρ]) o σ′′) contains (7). The structural formula implies

that there are i, j such that −a+1
2 ≤ i ≤ j ≤ b−1

2 and an irreducible constituent
δ1 ⊗ π1 of µ∗(σ′′) such that

δ([ν
a +1

2 ρ, ν
a−1
2 ρ])×δ([ν

a +1
2 ρ, ν

a−1
2 ρ]) ≤ δ([ν−iρ, ν

a−1
2 ρ])×δ([νj+1ρ, ν

b−1
2 ρ])×δ1.

Clearly, i = −a +1
2 , j = b−1

2 and µ∗(σ′′) contains an irreducible constituent of the

form δ([ν
a +1

2 ρ, ν
a−1
2 ρ])⊗ π1.
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Since σ′ is a subrepresentation of δ([ν
a+1
2 ρ, ν

b−1
2 ρ]) o σ′′, using Frobe-

nius reciprocity and the transitivity of Jacquet modules we deduce that the
Jacquet module of σ′ with respect to the appropriate parabolic subgroup contains

δ([ν
a+1
2 ρ, ν

b−1
2 ρ])⊗ δ([ν a +1

2 ρ, ν
a−1
2 ρ])⊗ π1.

By the transitivity of Jacquet modules, there is an irreducible constituent

δ2⊗π2 of µ∗(σ′) such that m∗(δ2) contains δ([ν
a+1
2 ρ, ν

b−1
2 ρ])⊗ δ([ν a +1

2 ρ, ν
a−1
2 ρ]).

Repeating the same arguments as in the proof of the Claim 5, or as in the first

part of the proof of this sub-claim, we obtain δ2 ∼= δ([ν
a +1

2 ρ, ν
b−1
2 ρ]). Now Lemma

3.7 implies εσ′((a , ρ), (b, ρ)) = 1. This ends the proof of Sub-claim 3.
Finally, Claims 4, 5, and 6 imply the theorem:

εσ′((a , ρ), (b, ρ)) = εσ((a , ρ), (a, ρ))εσ((b , ρ), (b, ρ)).

4 Invariants of discrete series II: the ε-function on
a certain subset of Jord(σ)

In this section we define and study the ε-function on a certain subset of the set of
the Jordan blocks. Throughout this section we denote the partial cuspidal support
of the irreducible representation σ by σcusp.

In Definition 3.6, we defined the values of εσ on the intersection of its domain
with Jord(σ) × Jord(σ). Now we will define it on the intersection of its domain
with Jord(σ); the restriction of εσ to this intersection will be referred to as the
”ε-function on single pairs”.

In the following lemma we gather some results on the embeddings of discrete
series.

Lemma 4.1. Let σ ∈ R(G) denote a discrete series and suppose that ρ ∈ R(GL)
is an irreducible essentially self-dual cuspidal representation such that some twists
of ρ appear in the cuspidal support of σ.

(1) If there is an a ∈ Jordρ(σ) such that a is defined and εσ((a , ρ), (a, ρ)) =
1, then there is a discrete series σ′ such that σ is a subrepresentation of

δ([ν−
a −1

2 ρ, ν
a−1
2 ρ])oσ′, and µ∗(σ) contains δ([ν−

a −1
2 ρ, ν

a−1
2 ρ])⊗σ′ with mul-

tiplicity one. If δ([ν−
a −1

2 ρ, ν
a−1
2 ρ])⊗ π is an irreducible constituent of µ∗(σ),

then π ∼= σ′, and δ([ν−
a −1

2 ρ, ν
a−1
2 ρ])⊗σ′ appears in µ∗(δ([ν−

a −1
2 ρ, ν

a−1
2 ρ])o

σ′) with multiplicity two.

(2) If εσ((a , ρ), (a, ρ)) = −1 for every a ∈ Jordρ(σ) such that a is defined, then
there is an irreducible representation δ ∈ R(GL) whose cuspidal support con-
sists only of twists of ρ and a discrete series σ′ ∈ R(G) without twists of ρ in
the cuspidal support such that σ is a subrepresentation of δ o σ′. Also, δ ⊗ σ′
appears in µ∗(σ) with multiplicity one and for (b, ρ′) ∈ Jord(σ), such that b
is defined and ρ′ 6∼= ρ, we have εσ((b , ρ′), (b, ρ′)) = εσ′((b , ρ

′), (b, ρ′)).
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Proof. If there is an a ∈ Jordρ(σ) such that a is defined and εσ((a , ρ), (a, ρ)) = 1
holds, the statement of the lemma can be proved in the exactly same way as [25,
Theorem 2.3], proof of which is completely based on the structural formula, the
square-integrability criterion, and the result analogous to the one given in Lemma
3.4.

Let us now assume that εσ((a , ρ), (a, ρ)) = −1 for every a ∈ Jordρ(σ)
such that a is defined. By Theorem 3.12, we deduce that there is an ordered
n-tuple (σ1, σ2, . . . , σn) of discrete series σi ∈ R(G) such that σ1 is strongly posi-
tive, σn ∼= σ, and, for every i = 2, 3, . . . , n, there are (ai, ρi), (bi, ρi) ∈ Jord(σ)
such that in Jordρi(σi) we have ai = (bi) and σi is a subrepresentation of

δ([ν−
ai−1

2 ρi, ν
bi−1

2 ρi]) o σi−1 and εσ((ai, ρi), (bi, ρi)) = 1.
Obviously, ρ 6∼= ρi for i = 2, 3, . . . , n. By [14, Theorem 5.3], there is an irre-

ducible representation δ1, which is the unique irreducible subrepresentation of an
induced representation of the form

δ([νxρ, νy1ρ])× δ([νx+1ρ, νy2ρ])× · · · × δ([νx+k−1ρ, νykρ]),

where x + i − 1 ≤ yi and yi < yi+1 for i = 1, 2, . . . , k, and νx+k−1ρ o σcusp
reduces, such that σ1 is a subrepresentation of δ1 o σsp, where σsp is a strongly
positive discrete series without twists of ρ in the cuspidal support. Also, δ1 ⊗ σsp
appears in µ∗(σ1) with multiplicity one. Note that Jordρi(σ1) = Jordρi(σsp) for
i = 2, . . . , n, and for (b, ρ′) ∈ Jord(σ1), such that b is defined and ρ′ 6∼= ρ, we
have εσ1

((b , ρ′), (b, ρ′)) = εσsp((b , ρ′), (b, ρ′)). It is a direct consequence of [11,
Subsection 6.3] that for i = 2, 3, . . . , n we have

δ([ν−
ai−1

2 ρi, ν
bi−1

2 ρi])× δ1 ∼= δ1 × δ([ν−
ai−1

2 ρi, ν
bi−1

2 ρi]).

Thus, there is an embedding

σ2 ↪→ δ1 × δ([ν−
a2−1

2 ρ2, ν
b2−1

2 ρ2]) o σsp.

So, there is an irreducible representation π1 such that σ2 is a subrepresentation of
δ1 o π1. Frobenius reciprocity implies that µ∗(σ2) ≥ δ1 ⊗ π1 and, since no twists

of ρ appear in the cuspidal support of δ([ν−
a2−1

2 ρ2, ν
b2−1

2 ρ2])oσsp, it follows that

π1 is a subquotient of δ([ν−
a2−1

2 ρ2, ν
b2−1

2 ρ2]) o σsp.

Since µ∗(δ1 o π1) ≥ µ∗(σ2) ≥ δ([ν−
a2−1

2 ρ2, ν
b2−1

2 ρ2]) ⊗ σ1, it can be eas-

ily seen that µ∗(π1) contains an irreducible constituent of the form δ([ν−
a2−1

2 ρ2,

ν
b2−1

2 ρ2]) ⊗ π′1. Using Jordρ2(σ1) = Jordρ2(σsp) and the first part of the lemma,
we conclude that the only irreducible constituent of such a form, appearing in

µ∗(δ([ν−
a2−1

2 ρ2, ν
b2−1

2 ρ2]) o σsp), is δ([ν−
a2−1

2 ρ2, ν
b2−1

2 ρ2]) ⊗ σsp, which appears

there with multiplicity two. Since δ([ν−
a2−1

2 ρ2, ν
b2−1

2 ρ2])⊗ σsp is contained in the

Jacquet modules of both irreducible subrepresentations of δ([ν−
a2−1

2 ρ2, ν
b2−1

2 ρ2])o
σsp, we conclude that π1 is a subrepresentation of δ([ν−

a2−1
2 ρ2, ν

b2−1
2 ρ2]) o σsp.
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Theorem 3.17 shows that π1 is a discrete series. Furthermore, no twists of ρ appear
in the cuspidal support of π1 and Jordρi(π1) = Jordρi(σ2) for i = 3, . . . , n.

If we denote by σ′2 the irreducible subrepresentation of the induced repre-

sentation δ([ν−
a2−1

2 ρ2, ν
b2−1

2 ρ2]) o σ1 different than σ2, applying the same ar-
guments we can conclude that there is an irreducible subrepresentation π′1 of

δ([ν−
a2−1

2 ρ2, ν
b2−1

2 ρ2]) o σsp such that σ′2 is a subrepresentation of δ1 o π′1. Since

both π1 and π′1 appear in the composition series of δ([ν−
a2−1

2 ρ2, ν
b2−1

2 ρ2]) o σsp
with multiplicity one, we get that δ1 ⊗ π1 appears in µ∗(σ2) with multiplicity
one. Obviously, for (b, ρ′) ∈ Jord(σ2), such that b is defined and ρ′ 6∼= ρ, we have
εσ2

((b , ρ′), (b, ρ′)) = επ1
((b , ρ′), (b, ρ′)).

Thus, if n = 2 we can take δ ∼= δ1 and σ′ ∼= π1. Suppose that n ≥ 3.
Repeating the same arguments, we deduce that σ3 is a subrepresentation of δ1oπ2,
for a discrete series π2 with desired properties. If n ≥ 4, repeating this procedure
we obtain the claim of the second part of the lemma. Note that for δ as in the
statement of the lemma we have δ ∼= δ1.

Lemma 4.2. Let σ ∈ R(G) denote a discrete series, and suppose that ρ ∈
Irr(GL) is a cuspidal unitarizable essentially self-dual representation such that
ρ o σcusp reduces. Write ρ o σcusp = τ1 + τ−1, where representations τ1 and τ−1
are irreducible tempered and mutually non-isomorphic. Suppose that Jordρ(σ) =
{a , a}. Also, suppose that if εσ((b , ρ′), (b, ρ′)) = 1 for some (b, ρ′) ∈ Jord(σ), then
Jordρ′(σcusp) = ∅ and Jordρ′(σ) = {b , b}. Then there is a unique i ∈ {1,−1} such
that the Jacquet module of σ with respect to an appropriate parabolic subgroup con-

tains an irreducible constituent of the form π ⊗ δ([νρ, ν a−1
2 ρ])⊗ τi. Also, if µ∗(σ)

contains an irreducible constituent of the form π′ ⊗ τ , where τ is an irreducible

subquotient of δ([νxρ, ν
a−1
2 ρ]) o σcusp, then x ≤ 0.

Proof. It follows from the classification of strongly positive discrete series, given
in [8, Theorem A], that for a strongly positive discrete series σsp with the partial
cuspidal support σcusp we have Jordρ(σsp) = ∅. Note that the cuspidal support of
the strongly positive discrete series does not contain twists of ρ.

Suppose that ε((a , ρ), (a, ρ)) = −1. Since Jordρ(σ) = {a , a}, an inductive
application of Theorem 3.12 implies that there is a strongly positive discrete series
σsp such that Jordρ(σsp) = {a , a}, which is impossible.

By Theorem 3.12, there exists an ordered n-tuple of discrete series (σ1, σ2,
. . ., σn), σi ∈ Irr(Gni), such that σ1 is strongly positive, σn ∼= σ, and for every
i = 2, . . . , n, there are (ai, ρi), (bi, ρi) ∈ Jord(σ) such that in Jordρi(σi) we have
ai = (bi) and

σi ↪→ δ([ν−
ai−1

2 ρi, ν
bi−1

2 ρi]) o σi−1.

We can take (an, bn, ρn) = (a , a, ρ), and for i = 2, 3, . . . , n we have Jordρi(σcusp) =
∅ and ρi1 6∼= ρi2 for i1, i2 ∈ {2, 3, . . . , n}, i1 6= i2. Also, there are no twists of
ρ2, ρ3, . . . , ρn appearing in the cuspidal support of σ1.
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It follows from [14, Theorem 4.6] or [19, Section 7] that there is a unique
irreducible representation π1 such that σ1 is a subrepresentation of π1 o σcusp.
Also, µ∗(σ1) contains π1 ⊗ σcusp with multiplicity one, and there are no twists of
ρ, ρ2, . . . , ρn−1 appearing in the cuspidal support of π1 (the explicit form of π1 can
be deduced from [14, Theorem 4.6] or [19, Section 7]). We have an embedding

σ ↪→δ([ν−
a −1

2 ρ, ν
a−1
2 ρ])× δ([ν−

an−1−1

2 ρn−1, ν
bn−1−1

2 ρn−1])× · · ·×

× δ([ν−
a2−1

2 ρ2, ν
b2−1

2 ρ2])× π1 o σcusp.

We note that the induced representation δ([ν−
an−1−1

2 ρn−1, ν
bn−1−1

2 ρn−1]) ×
· · · × δ([ν−

a2−1
2 ρ2, ν

b2−1
2 ρ2])× π1 is irreducible (this is proved in much bigger gen-

erality in [11, Subsection 6.3]) and denote it by π2.

• Claim 1: π2 ⊗ σcusp appears in µ∗(σn−1) with multiplicity one.

Let us prove the Claim 1. The transitivity of Jacquet modules shows that
such a multiplicity is less than or equal to the multiplicity of

δ([ν−
an−1−1

2 ρn−1, ν
bn−1−1

2 ρn−1])⊗ · · · ⊗ δ([ν−
a2−1

2 ρ2, ν
b2−1

2 ρ2])⊗ π1 ⊗ σcusp (11)

in the Jacquet module of σn−1 with respect to the appropriate parabolic subgroup.

Since we have that σn−1 ↪→ δ([ν−
an−1−1

2 ρn−1, ν
bn−1−1

2 ρn−1]) o σn−2, using
Lemma 4.1(1) one can see that the multiplicity of (11) in the Jacquet module of
σn−1 with respect to the appropriate parabolic subgroup equals the multiplicity
of

δ([ν−
an−2−1

2 ρn−2, ν
bn−2−1

2 ρn−2])⊗ · · · ⊗ δ([ν−
a2−1

2 ρ2, ν
b2−1

2 ρ2])⊗ π1 ⊗ σcusp

in the Jacquet module of σn−2 with respect to the appropriate parabolic subgroup.
A repeated application of this procedure shows that the multiplicity of (11) in the
Jacquet module of σn−1 with respect to the appropriate parabolic subgroup equals
the multiplicity of π1⊗σcusp in µ∗(σ1). Consequently, the multiplicity of π2⊗σcusp
in µ∗(σn−1) equals one.

Note that δ([ν−
a −1

2 ρ, ν
a−1
2 ρ])× π2 is irreducible.

• Claim 2: δ([νxρ, νyρ]) o σcusp is irreducible for x > 0.

Since x > 0, an irreducible tempered subquotient of δ([νxρ, νyρ])oσcusp has
to be strongly positive, since otherwise the Jacquet module of δ([νxρ, νyρ])oσcusp
would contain an irreducible constituent of the form δ([νz1ρ′, νz2ρ′]) ⊗ π where
z1 ≤ 0 and z1 + z2 ≥ 0, which is impossible. But, since ρ o σcusp reduces, it fol-
lows from [8, Theorem A] that there are no twists of ρ appearing in the cuspidal
support of strongly positive discrete series with the partial cuspidal support iso-
morphic to σcusp. Consequenty, there are no irreducible tempered subquotients of
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δ([νxρ, νyρ]) o σcusp. In the same way as in the proof of Theorem 3.17 we deduce
that every irreducible non-tempered subquotient of δ([νxρ, νyρ])oσcusp is isomor-
phic to L(δ([ν−yρ, ν−xρ]), σcusp). It follows that δ([νxρ, νyρ])oσcusp is irreducible
and the Claim 2 is proved.

Thus, we have δ([νxρ, νyρ])oσcusp ∼= δ([ν−yρ, ν−xρ])oσcusp. In this way we
obtain an embedding

σ ↪→ π2 × δ([ρ, ν
a−1
2 ρ])× δ([νρ, ν

a −1
2 ρ]) o σcusp

∼= π2 × δ([νρ, ν
a −1

2 ρ])× δ([ρ, ν
a−1
2 ρ]) o σcusp

↪→ π2 × δ([νρ, ν
a −1

2 ρ])× δ([νρ, ν
a−1
2 ρ])× ρo σcusp.

The induced representation π2 × δ([νρ, ν
a −1

2 ρ]) is irreducible since no twists of ρ
appear in the cuspidal supports of π2, and we denote it by π. Frobenius reci-
procity and Lemma 2.5 imply that the Jacquet module of σ with respect to
the appropriate parabolic subgroup contains an irreducible representation of the

form π ⊗ δ([νρ, ν
a−1
2 ρ]) ⊗ τ , where τ is an irreducible representation such that

µ∗(τ) ≥ ρ⊗σcusp. Thus, there is an i ∈ {1,−1} such that the Jacquet module of σ

with respect to the appropriate parabolic subgroup contains π⊗δ([νρ, ν a−1
2 ρ])⊗τi.

• Claim 3: π ⊗ δ([νρ, ν
a−1
2 ρ]) ⊗ τi appears with multiplicity one in the

Jacquet module of δ([ν−
a −1

2 ρ, ν
a−1
2 ρ]) o σn−1 with respect to the appro-

priate parabolic subgroup.

Let us prove the Claim 3. The transitivity of Jacquet modules implies that

there exists an irreducible constituent π ⊗ τ ′ of µ∗(δ([ν−
a −1

2 ρ, ν
a−1
2 ρ]) o σn−1)

such that µ∗(τ ′) ≥ δ([νρ, ν a−1
2 ρ])⊗ τi.

The structural formula implies that there are i, j such that −a +1
2 ≤ i ≤ j ≤

a−1
2 and an irreducible constituent π′ ⊗ τ ′′ of µ∗(σn−1) such that

π ≤ δ([ν−iρ, ν
a −1

2 ρ])× δ([νj+1ρ, ν
a−1
2 ρ])× π′

and

τ ′ ≤ δ([νi+1ρ, νjρ]) o τ ′′.

Since π ∼= π2×δ([νρ, ν
a −1

2 ρ]) and twists of ρ do not appear in the cuspidal support
of σn−1, it follows that i = −1, j = a−1

2 and π′⊗τ ′′ ∼= π2⊗σcusp by Claim 1. Also,

since δ([νρ, ν
a−1
2 ρ])⊗ τi appears with multiplicity one in µ∗(δ([ρ, ν

a−1
2 ρ])oσcusp),

it follows that the multiplicity of π ⊗ δ([νρ, ν a−1
2 ρ]) ⊗ τi in the Jacquet module

of δ([ν−
a −1

2 ρ, ν
a−1
2 ρ])o σn−1 with respect to the appropriate parabolic subgroup

equals the multiplicity of π2 ⊗ σcusp in µ∗(σn−1), which equals one.

We denote by σ′ the irreducible subrepresentation of δ([ν−
a −1

2 ρ, ν
a−1
2 ρ]) o

σn−1 different than σ. Repeating the same arguments as before, one can deduce
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that there is an i′ ∈ {1,−1} such that π ⊗ δ([νρ, ν
a−1
2 ρ]) ⊗ τi′ appears in the

Jacquet module of σ′ with respect to the appropriate parabolic subgroup. Also,

π ⊗ δ([νρ, ν a−1
2 ρ]) ⊗ τi′ appears with multiplicity one in the Jacquet module of

δ([ν−
a −1

2 ρ, ν
a−1
2 ρ]) o σn−1 with respect to the appropriate parabolic subgroup.

Thus, there is a unique i ∈ {1,−1} such that π ⊗ δ([νρ, ν a−1
2 ρ]) ⊗ τi appears in

the Jacquet module of σ with respect to the appropriate parabolic subgroup.
Suppose that µ∗(σ) contains an irreducible constituent of the form π′ ⊗ τ ,

where τ is an irreducible subquotient of δ([νxρ, ν
a−1
2 ρ]) o σcusp for x > 0. By the

Claim 2, the induced representation δ([νxρ, ν
a−1
2 ρ]) o σcusp is then irreducible, so

τ ∼= δ([ν−
a−1
2 ρ, ν−xρ]) o σcusp. Thus, µ∗(σ) ≥ π ⊗ δ([ν− a−1

2 ρ, ν−xρ]) o σcusp and
one can directly see that this contradicts the square-integrability of σ. This finishes
the proof.

Lemma 4.3. Let σ ∈ R(G) denote a discrete series and suppose that ρ ∈ Irr(GL)
is a cuspidal unitarizable essentially self-dual representation such that ρ o σcusp
reduces and write ρ o σcusp = τ1 + τ−1, where representations τ1 and τ−1 are
irreducible, tempered and mutually non-isomorphic. Suppose that Jordρ(σ) 6= ∅,
and denote the maximal element of Jordρ(σ) by amax. Then there is a unique i ∈
{1,−1} such that the Jacquet module of σ with respect to an appropriate parabolic

subgroup contains an irreducible constituent of the form π⊗ δ([νρ, ν
amax−1

2 ρ])⊗ τi.

Proof. Since Jordρ(σ) 6= ∅, in the beginning of the proof of Lemma 4.2 we have
seen that σ is non-strongly positive. Since for a strongly positive discrete series
σsp we have Jordρ(σsp) = ∅, an inductive application of Theorem 3.12 implies that
Jordρ(σ) consists of an even number of elements.

In the same way as in the proof of Theorem 3.12, one can see that there is an
ordered n-tuple of discrete series (σ1, σ2, . . ., σn), σi ∈ Irr(Gni), such that σn ∼= σ,
σ1 is as in the statement of the previous lemma and Jordρ(σ1) = {a, amax}, and
for every i = 2, 3, . . . , n, there are (ai, ρi), (bi, ρi) ∈ Jord(σ) such that ai = (bi) ∈
Jordρi(σi),

σi ↪→ δ([ν−
ai−1

2 ρi, ν
bi−1

2 ρi]) o σi−1,

and

• if ρi ∼= ρj for some j > i and bi is even, then ai > aj ,

• if ρi ∼= ρj for some j > i and bi is odd, then bi < bj .

Thus, we have an embedding

σ ↪→ δ([ν−
an−1

2 ρn, ν
bn−1

2 ρn])× · · · × δ([ν−
a2−1

2 ρ2, ν
b2−1

2 ρ2]) o σ1,

and
σ1 ↪→ δ([ν−

a−1
2 ρ, ν

amax−1
2 ρ]) o σ′,

where σ′ is a discrete series and Jordρ(σ
′) = ∅.
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By the previous lemma, there is a unique j ∈ {1,−1} such that the Jacquet
module of σ1 with respect to an appropriate parabolic subgroup contains an irre-

ducible constituent of the form π′ ⊗ δ([νρ, ν
amax−1

2 ρ])⊗ τj .
Similarly as in the proof of the previous lemma, we obtain that there is an i ∈

{1,−1} such that the Jacquet module of σ with respect to an appropriate parabolic

subgroup contains an irreducible constituent of the form π ⊗ δ([νρ, ν
amax−1

2 ρ]) ⊗
τi. Thus, there is an irreducible constituent π ⊗ τ of µ∗(σ) such that µ∗(τ) ≥
δ([νρ, ν

amax−1
2 ρ])⊗ τi.

Using the structural formula, we obtain that there is an irreducible con-
stituent π′ ⊗ τ ′ of µ∗(σ1) such that τ ≤ π′′ o τ ′, for some irreducible represen-

tation π′′. Since ν
amax−1

2 ρ appears in the cuspidal support of τ and it appears

neither in the cuspidal support of δ([ν−
ak−1

2 ρk, ν
bk−1

2 ρk]), for k = 2, . . . , n, nor
in the cuspidal support of σ′ (since Jordρ(σ

′) = ∅), we get that τ ′ is an irre-

ducible subquotient of δ([νxρ, ν
amin−1

2 ρ]) o σcusp for x such that 0 ≤ x ≤ amin−1
2 .

Now the previous lemma implies that x = 0 and that τ ∼= τ ′ is an irreducible

subquotient of δ([ρ, ν
amin−1

2 ρ])o σcusp. The transitivity of Jacquet modules yields
that the Jacquet module of σ1 contains an irreducible constituent of the form

π′ ⊗ δ([νρ, ν
amax−1

2 ρ])⊗ τi. Now the previous lemma implies i = j, and the lemma
is proved.

Definition 4.4. Let σ denote a discrete series. We additionally define εσ on
certain elements of Jord(σ):

(1) Suppose that Jordρ(σ) consists of even numbers and let amin denote the mini-
mal element of Jordρ(σ). We define εσ(amin, ρ) so as to satisfy εσ(amin, ρ) = 1

if µ∗(σ) contains an irreducible constituent of the form δ([ν
1
2 ρ, ν

amin−1

2 ρ])⊗π,
and let εσ(amin, ρ) = −1 otherwise. Also, for a ∈ Jordρ(σ) such that a is de-
fined, let εσ(a , ρ) · εσ(a, ρ) = εσ((a , ρ), (a, ρ)).

(2) Suppose that Jordρ(σ) consists of odd numbers and ρ o σcusp reduces. We
denote by τ1 and τ−1 the irreducible, tempered, mutually non-isomorphic sub-
representations of ρ o σcusp. Let amax denote the maximal element of Jordρ.
Let εσ(amax, ρ) = i, where i ∈ {1,−1} is such that the Jacquet module of σ with
respect to an appropriate parabolic subgroup contains an irreducible constituent

of the form π ⊗ δ([νρ, ν
amax−1

2 ρ]) ⊗ τi. Also, for a ∈ Jordρ(σ) such that a is
defined, define εσ(amin, ρ) so as to satisfy εσ(a , ρ)·εσ(a, ρ) = εσ((a , ρ), (a, ρ)).

In this way, we inductively define εσ-function on single pairs.

Lemma 4.5. Suppose that ρ ∈ Irr(GLnρ) is a cuspidal unitarizable essentially
self-dual representation such that ρo σcusp reduces. Let amax denote the maximal
element of Jordρ(σ). Suppose that εσ(((amax) , ρ), (amax, ρ)) = 1 and let σ′ stand
for a discrete series such that σ is a subrepresentation of

δ([ν−
(amax) −1

2 ρ, ν
amax−1

2 ρ]) o σ′.
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Suppose that Jordρ(σ
′) 6= ∅ and let bmax stands for the maximal ele-

ment of Jordρ(σ
′), then εσ(amax, ρ) · εσ((bmax, ρ), ((amax) , ρ)) = εσ′(bmax, ρ), i.e.,

εσ(bmax, ρ) = εσ′(bmax, ρ).

Proof. In the proof of Lemma 4.3 we have seen that Jordρ(σ) consists of an even
number of odd positive integers. We note that we have fixed a choice of irre-
ducible tempered mutually non-isomorphic representations τ1 and τ−1 such that
ρo σcusp = τ1 + τ−1.

Let π denote a discrete series subrepresentation of the induced representation

δ([ν−
(amax) −1

2 ρ, ν
amax−1

2 ρ])oσ′. First, using a repeated application of Lemma 4.1
for irreducible self-dual cuspidal representations non-isomorphic to ρ whose twists
appear in the cuspidal support of π we obtain an ordered k-tuple (σ′1, . . . , σ

′
k) of

discrete series in R(G) such that π ∼= σ′k and for every i = 2, . . . , k there is an
irreducible representation δ′i ∈ R(GL) such that σ′i ↪→ δ′i o σ′i−1, and µ∗(σ′i) con-
tains δ′i ⊗ σ′i−1 with multiplicity one. Here, note that for an irreducible essentially
self-dual cuspidal representation ρ′, ρ′ 6∼= ρ, we first use Lemma 4.1(1) as many
times as possible, and then we use Lemma 4.1(2). Consequently, in such a way we
end with a discrete series σ′1 whose cuspidal support contains only twists of ρ and
the partial cuspidal support σcusp.

We further apply Lemma 4.1 several times, together with Theorem 3.12,
so that there is an ordered m-tuple (σ1, . . . , σm) of discrete series in R(G) such
that π ∼= σm and for every i = 2, . . . ,m there is an irreducible representation
δi ∈ R(GL) such that σi ↪→ δi o σi−1, µ∗(σi) contains δi ⊗ σi−1 with multiplicity

one, σ1 is a subrepresentation of δ([ν−
(amax) −1

2 ρ, ν
amax−1

2 ρ]) o σcusp and δ2 ∼=
δ([ν−

c−1
2 ρ, ν

bmax−1
2 ρ]), for c such that in Jordρ(σ2) we have (bmax) = c. Note

that we can take σj ∼= σ′j+k−m and δj ∼= δ′j+k−m for j = m − k + 1 . . . ,m.
Also, if νxρ appears in the cuspidal support of some δi for i ∈ {2, . . . ,m}, then

− (amax) −3
2 ≤ x ≤ (amax) −3

2 . We note that this also implies that the Jacquet
module of σ′ with respect to the appropriate parabolic subgroup contains

δm ⊗ δm−1 ⊗ · · · ⊗ δ3 ⊗ σ′′2 , (12)

where σ′′2 is an irreducible subrepresentation of δ2 o σcusp.
Lemma 4.2 and the structural formula imply that there is an i ∈ {1,−1} such

that the Jacquet module of σ1 with respect to the appropriate parabolic subgroup

contains δ([νρ, ν
(amax) −1

2 ρ])⊗ δ([νρ, ν
amax−1

2 ρ])⊗ τi.
Thus, the Jacquet module of π with respect to the appropriate parabolic

subgroup contains

δm ⊗ δm−1 ⊗ · · · ⊗ δ2 ⊗ δ([νρ, ν
(amax) −1

2 ρ])⊗ δ([νρ, ν
amax−1

2 ρ])⊗ τi. (13)

It can be easily seen that the multiplicity of (13) in the Jacquet module of

δ([ν−
(amax) −1

2 ρ, ν
amax−1

2 ρ]) o σ′ with respect to the appropriate parabolic sub-

group equals the multiplicity of δ([νρ, ν
(amax) −1

2 ρ])⊗ δ([νρ, ν
amax−1

2 ρ])⊗ τi in the
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Jacquet module of δ([ν−
(amax) −1

2 ρ, ν
amax−1

2 ρ]) o σcusp with respect to the appro-
priate parabolic subgroup, and it is a direct consequence of the structural formula
that such a multiplicity equals one.

This proves the first claim of the proof:

• Claim 1: For every discrete series subrepresentation of δ([ν−
(amax) −1

2 ρ,

ν
amax−1

2 ρ]) o σ′ there is a unique i ∈ {1,−1} such that its Jacquet mod-
ule with respect to the appropriate parabolic subgroup contains (13).

We denote by πi a unique discrete series subrepresentation of δ([ν−
(amax) −1

2 ρ,

ν
amax−1

2 ρ]) o σ′ whose Jacquet module with respect to the appropriate parabolic
subgroup contains (13). Note that the transitivity of Jacquet modules implies
επi(amax, ρ) = i.

Let i1 ∈ {1,−1} be such that πi1 is an irreducible subrepresentation of the

induced representation δ([ν−
(amax) −1

2 ρ, ν
amax−1

2 ρ]) o σ′ such that

επi1 ((bmax, ρ), ((amax) , ρ)) = 1.

From Claims 1, 2 and 4 from the proof of Theorem 3.18 follows that

επ−i1 ((bmax, ρ), ((amax) , ρ)) = −1.

• Claim 2: επi1 (amax, ρ) = εσ′(bmax, ρ).

Let us prove the Claim 2. For simplicity of the notation, let j = εσ′(bmax, ρ).
To πi1 we attach an ordered m-tuple (σ1, σ2, . . . , σm), as in the first part of

the proof. Using the construction provided in the proof of the previous lemma,
we obtain εσ2((bmax, ρ), ((amax) , ρ)) = 1 and deduce that the Jacquet module of

δ([ν−
(amax) −1

2 ρ, ν
amax−1

2 ρ])oσ′ with respect to the appropriate parabolic subgroup
contains

δm⊗· · ·⊗δ3⊗δ([ν−
bmax−1

2 ρ, ν
(amax) −1

2 ρ])⊗δ([νρ, ν
c−1
2 ρ])⊗δ([νρ, ν

amax−1
2 ρ])⊗τi1 .

Using (12) and the definition of the ordered m-tuple (σ1, . . . , σm), we get that

δ([ν−
bmax−1

2 ρ, ν
(amax) −1

2 ρ])⊗ δ([νρ, ν
c−1
2 ρ])⊗ δ([νρ, ν

amax−1
2 ρ])⊗ τi1

is contained in the Jacquet module of δ([ν−
(amax) −1

2 ρ, ν
amax−1

2 ρ]) o σ′′2 with re-

spect to the appropriate parabolic subgroup. Consequently, µ∗(δ([ν−
(amax) −1

2 ρ,

ν
amax−1

2 ρ]) o σ′′2 ) contains an irreducible constituent of the form δ([ν−
bmax−1

2 ρ,

ν
(amax) −1

2 ρ]) ⊗ π′, for π′ such that the Jacquet module of π′ with respect to the

appropriate parabolic subgroup contains δ([νρ, ν
c−1
2 ρ]) ⊗ δ([νρ, ν

amax−1
2 ρ]) ⊗ τi1 .

The structural formula implies that there are l1, l2, − (amax) +1
2 ≤ l1 ≤ l2 ≤ amax−1

2 ,
and an irreducible constituent δ ⊗ π′′ of µ∗(σ′′2 ) such that

δ([ν−
bmax−1

2 ρ, ν
(amax) −1

2 ρ]) ≤ δ([ν−l1ρ, ν
(amax) −1

2 ρ])× δ([νl2+1ρ, ν
amax−1

2 ρ])× δ

39



and

π′ ≤ δ([νl1+1ρ, νl2ρ]) o π′′.

Obviously, l2 = amax−1
2 . Since σ′′2 is a discrete series subrepresentation of

δ([ν−
c−1
2 ρ, ν

bmax−1
2 ρ]) o σcusp, we deduce at once that ν−

bmax−1
2 ρ is not contained

in the cuspidal support of δ. Consequently, l1 = bmax−1
2 and π′′ ∼= σ′′2 . It follows

that

δ([νρ, ν
c−1
2 ρ])⊗ δ([νρ, ν

amax−1
2 ρ])⊗ τi1

is contained in the Jacquet module of δ([ν
bmax+1

2 ρ, ν
amax−1

2 ρ])oσ′′2 with respect to
the appropriate parabolic subgroup. From the cuspidal support of σ′′2 and (12), we
deduce that the Jacquet module of σ′ with respect to the appropriate parabolic
subgroup contains

δm−1 ⊗ δm−2 ⊗ · · · ⊗ δ3 ⊗ δ([νρ, ν
c−1
2 ρ])⊗ δ([νρ, ν

bmax−1
2 ρ])⊗ τi1 .

Now the transitivity of Jacquet modules yields i1 = j, and the Claim 2 is proven.
Consequently, επ−i1 (amax, ρ) = −εσ′(bmax, ρ), and for a discrete series sub-

representation σ of δ([ν−
(amax) −1

2 ρ, ν
amax−1

2 ρ]) o σ′ we have

εσ(amax, ρ) · εσ((bmax, ρ), ((amax) , ρ)) = εσ′(bmax, ρ).

This finishes the proof.

From the proof of Lemma 4.5, one also obtains the following result:

Corollary 4.6. Suppose that ρ ∈ Irr(GLnρ) is a cuspidal unitarizable essentially
self-dual representation such that ρ o σcusp reduces and let us write ρ o σcusp =
τ1 + τ−1, where representations τ1 and τ−1 are irreducible tempered and mutually
non-isomorphic. Let σ′ denote a discrete series such that Jordρ(σ

′) = ∅. For odd
positive integers a and b, such that a < b, and i ∈ {1,−1} there is a unique
irreducible discrete series subrepresentation σ of

δ([ν−
a−1
2 ρ, ν

b−1
2 ρ]) o σ′

such that εσ(b, ρ) = i.

In the same way as in the proof of Lemma 3.5 we obtain the following result.

Lemma 4.7. Suppose that Jordρ(σ) consists of even numbers and let amin denote
the minimal element of Jordρ(σ). Then εσ(amin, ρ) = 1 if and only if σ is a sub-

representation of an induced representation of the form δ([ν
1
2 ρ, ν

amin−1

2 ρ])oπ, for
an irreducible representation π.
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Lemma 4.8. Suppose that ρ ∈ Irr(GLnρ) is a cuspidal unitarizable essentially

self-dual representation such that ν
1
2 ρ o σcusp reduces. Let σ′ denote a discrete

series such that Jordρ(σ
′) = ∅. For positive half-integers a and b, such that a < b,

there is a unique irreducible subrepresentation of

δ([ν−aρ, νbρ]) o σ′

which contains an irreducible constituent of the form δ([ν
1
2 ρ, νaρ])⊗π in its Jacquet

module with respect to the appropriate parabolic subgroup.

Proof. In Theorem 3.17 we have seen that the induced representation δ([ν−aρ,
νbρ]) o σ′ contains two irreducible subrepresentations which are mutually non-
isomorphic and square-integrable, let us denote them by σ1 and σ2. For i = 1, 2,
there is a unique irreducible tempered subrepresentation τi of δ([ν−aρ, νaρ]) o σ′

such that σi is a subrepresentation of δ([νa+1ρ, νbρ]) o τi.
It follows from the structural formula and the description of Jordρ(σ

′) that

the only irreducible constituent of the form δ([ν
1
2 ρ, νaρ]) × δ([ν 1

2 ρ, νaρ]) ⊗ π ap-
pearing in µ∗(δ([ν−aρ, νaρ]) o σ′) is

δ([ν
1
2 ρ, νaρ])× δ([ν 1

2 ρ, νaρ])⊗ σ′,

which appears there with multiplicity one. Thus, there is exactly one i ∈ {1, 2}
such that µ∗(τi) ≥ δ([ν

1
2 ρ, νaρ])× δ([ν 1

2 ρ, νaρ])⊗ σ′, and we denote it by i2.
Following the same lines as in the proof of the Claim 4 from Theorem 3.18, we

deduce that then µ∗(σi1) ≥ δ([ν 1
2 ρ, νaρ])⊗ π′, for some irreducible representation

π′.
Let i2 ∈ {1, 2} such that i1 6= i2. Suppose that µ∗(σi2) also contains an

irreducible constituent of the form δ([ν
1
2 ρ, νaρ]) ⊗ π1, for some irreducible repre-

sentation π1.
Since σi2 is a subrepresentation of δ([ν

1
2 ρ, νbρ]) × δ([ν−aρ, ν− 1

2 ρ]) o σ′, by

Lemma 2.5 there is an irreducible subquotient π2 of δ([ν−aρ, ν−
1
2 ρ])oσ′ such that

σi2 is a subrepresentation of δ([ν
1
2 ρ, νbρ])oπ2. Obviously, µ∗(σi2) ≥ δ([ν 1

2 ρ, νbρ])⊗
π2. Since µ∗(σi2) ≥ δ([ν

1
2 ρ, νaρ]) ⊗ π1 and a < b, it follows from the structural

formula that µ∗(π2) contains an irreducible constituent of the form δ([ν
1
2 ρ, νaρ])⊗

π3. Thus, the Jacquet module of σi2 with respect to the appropriate parabolic

subgroup contains δ([ν
1
2 ρ, νbρ])⊗ δ([ν 1

2 ρ, νaρ])⊗ π3.
So, there is an irreducible representation δ such that µ∗(σi2) ≥ δ ⊗ π3

and m∗(δ) ≥ δ([ν
1
2 ρ, νbρ]) ⊗ δ([ν

1
2 ρ, νaρ]). Since σi2 is a subrepresentation of

δ([ν−aρ, νbρ]) o σ′, there are i, j such that −a− 1 ≤ i ≤ j ≤ b and an irreducible
constituent δ′ ⊗ π′ of µ∗(σ′) such that

δ ≤ δ([ν−iρ, νaρ])× δ([νj+1ρ, νbρ])× δ′

and

π3 ≤ δ([νi+1ρ, νjρ]) o π′.
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From Jordρ(σ
′) = ∅ we obtain that i = j = − 1

2 and π3 ∼= σ′. Thus, µ∗(σi2) ≥
δ([ν

1
2 ρ, νbρ])× δ([ν 1

2 ρ, νaρ])⊗ σ′. This leads to

µ∗(δ([νa+1ρ, νbρ]) o τi2) ≥ δ([ν 1
2 ρ, νbρ])× δ([ν 1

2 ρ, νaρ])⊗ σ′,

and one readily sees that this gives µ∗(τi2) ≥ δ([ν
1
2 ρ, νaρ]) × δ([ν 1

2 ρ, νaρ]) ⊗ σ′,
which is impossible. This proves the lemma.

Lemma 4.9. Suppose that ρ ∈ Irr(GLnρ) is a cuspidal unitarizable essentially
self-dual representation such that Jordρ(σ) consists of even integers and let amin

denote the minimal element of Jordρ(σ). Suppose that εσ((amin, ρ), (a, ρ)) = 1,
where amin = a in Jordρ(σ). Let σ′ stand for a discrete series such that σ is a
subrepresentation of

δ([ν−
amin−1

2 ρ, ν
a−1
2 ρ]) o σ′.

If Jordρ(σ
′) 6= ∅ and bmin stands for the minimal element of Jordρ(σ

′), then
εσ(amin, ρ) · εσ((a, ρ), (bmin, ρ)) = εσ′(bmin, ρ), i.e., εσ(bmin, ρ) = εσ′(bmin, ρ).

Proof. The proof is similar to the one of Theorem 3.18, and we divide it in a series
of claims. First we note that in R(G) we have

δ([ν−
amin−1

2 ρ, ν
amin−1

2 ρ]) o σ′ = τ1 + τ2,

for mutually non-isomorphic irreducible tempered representations τ1 and τ2. The
first claim is analogous to the Claim 1 in the proof of Theorem 3.18.

• Claim 1: There exists a unique α ∈ {1, 2} such that σ is a subrepresentation

of δ([ν
amin+1

2 ρ, ν
a−1
2 ρ]) o τα.

• Claim 2: There exists a unique β ∈ {1, 2} such that µ∗(τβ) contains

δ([ν
1
2 ρ, ν

amin−1

2 ρ])× δ([ν 1
2 ρ, ν

amin−1

2 ρ])⊗ σ′. (14)

The Claim 2 can be proved in the same way as the Claim 2 in the proof of The-
orem 3.18. Also, in the same way we obtain that (14) is a unique irreducible

constituent of µ∗(δ([ν−
amin−1

2 ρ, ν
amin−1

2 ρ]) o σ′) of the form δ([ν
1
2 ρ, ν

amin−1

2 ρ]) ×
δ([ν

1
2 ρ, ν

amin−1

2 ρ]) ⊗ π, appears there with multiplicity one, and that τβ is a sub-
representation of

δ([ν
1
2 ρ, ν

amin−1

2 ρ])× δ([ν 1
2 ρ, ν

amin−1

2 ρ]) o σ′.

• Claim 3: There exists a unique γ ∈ {1, 2} such that µ∗(τγ) contains an
irreducible constituent of the form

δ([ν
amin+1

2 ρ, ν
bmin−1

2 ρ])⊗ π.
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The Claim 3 can be proved in the same way as the Claim 3 in the proof of

Theorem 3.18. Also, π ∼= δ([ν−
amin−1

2 ρ, ν
amin−1

2 ρ]) o σ′′, for a discrete series σ′′

such that σ′ is a subrepresentation of δ([ν
amin+1

2 ρ, ν
bmin−1

2 ρ]) o σ′′. Furthermore,

τγ is a subrepresentation of δ([ν
amin+1

2 ρ, ν
bmin−1

2 ρ]) o π.

• Claim 4: εσ(amin, ρ) = 1 if and only if α = β.

Suppose that εσ(amin, ρ) = 1. Using the definition of the ε-function and Lemma
2.5, we obtain that there are irreducible representations π1 and π2 such that we
have the following embeddings:

σ ↪→ δ([ν
1
2 ρ, ν

a−1
2 ρ]) o π1

σ ↪→ δ([ν
1
2 ρ, ν

amin−1

2 ρ]) o π2.

Frobenius reciprocity gives µ∗(σ) ≥ δ([ν 1
2 ρ, ν

amin−1

2 ρ])⊗ π2 and it follows directly
from the structural formula that µ∗(π1) contains an irreducible constituent of the

form δ([ν
1
2 ρ, ν

amin−1

2 ρ])⊗π. Since µ∗(σ) does not contain an irreducible constituent
of the form νxρ ⊗ π′ for x < amin−1

2 , it follows that µ∗(π1) also does not contain
an irreducible constituent of such a form νxρ⊗ π′, since otherwise there would be
an irreducible representation π′1 such that π1 is a subrepresentation of νxρ o π′1,
and we would have

σ ↪→ δ([ν
1
2 ρ, ν

a−1
2 ρ]) o π1 ↪→ δ([ν

1
2 ρ, ν

a−1
2 ρ])× νxρo π′1

∼= νxρ× δ([ν 1
2 ρ, ν

a−1
2 ρ]) o π′1,

a contradiction.
Using Lemma 3.5 we deduce that there is an irreducible representation π′′

such that π1 is a subrepresentation of δ([ν
1
2 ρ, ν

amin−1

2 ρ]) o π′′. The irreducibility

of δ([ν
1
2 ρ, ν

a−1
2 ρ])× δ([ν 1

2 ρ, ν
amin−1

2 ρ]), together with Frobenius reciprocity, shows
that µ∗(σ) contains

δ([ν
1
2 ρ, ν

a−1
2 ρ])× δ([ν 1

2 ρ, ν
amin−1

2 ρ])⊗ π′′. (15)

Since the irreducible constituent (15) also appears in µ∗(δ([ν
amin+1

2 ρ, ν
a−1
2 ρ])oτα),

there are i, j such that amin−1
2 ≤ i ≤ j ≤ a−1

2 and an irreducible constituent δ⊗π′′2
of µ∗(τα) such that

δ([ν
1
2 ρ, ν

a−1
2 ρ])×δ([ν 1

2 ρ, ν
amin−1

2 ρ]) ≤ δ([ν−iρ, ν−
amin+1

2 ρ])×δ([νj+1ρ, ν
a−1
2 ρ])×δ.

It follows that i = amin−1
2 . Since τα is a subrepresentation of δ([ν−

amin−1

2 ρ,

ν
amin−1

2 ρ]) o σ′ and a 6∈ Jordρ(σ
′), µ∗(τα) does not contain an irreducible con-

stituent of the form νxρ⊗π′′3 such that amin+1
2 ≤ x ≤ a−1

2 . It follows that j = a−1
2

and, consequently,
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δ ∼= δ([ν
1
2 ρ, ν

amin−1

2 ρ])× δ([ν 1
2 ρ, ν

amin−1

2 ρ]).

Thus, α = β.
Conversely, if α = β in the same way as in the proof of the Claim 4 of

Theorem 3.18 we obtain that εσ(amin, ρ) = 1.
The following claim is analogous to the Claim 5 in the proof of Theorem 3.18:

• Claim 5: εσ((a, ρ), (bmin, ρ)) = 1 if and only if α = γ.

• Claim 6: εσ′((bmin, ρ)) = 1 if and only if β = γ.

Let σ′′ denote a discrete series such that σ′ is a subrepresentation of δ([ν
amin+1

2 ρ,

ν
bmin−1

2 ρ]) o σ′′, given by Lemma 3.15.

The induced representation δ([ν−
amin−1

2 ρ, ν
amin−1

2 ρ]) o σ′ is a subrepresenta-
tion of

δ([ν−
amin−1

2 ρ, ν
amin−1

2 ρ])× δ([ν
amin+1

2 ρ, ν
bmin−1

2 ρ]) o σ′′,

and in R(G) we have

δ([ν−
amin−1

2 ρ, ν
amin−1

2 ρ])× δ([ν
amin+1

2 ρ, ν
bmin−1

2 ρ]) o σ′′ =

δ([ν−
amin−1

2 ρ, ν
bmin−1

2 ρ]) o σ′′+

+L(δ([ν−
amin−1

2 ρ, ν
amin−1

2 ρ]), δ([ν
amin+1

2 ρ, ν
bmin−1

2 ρ])) o σ′′.

We split the rest of the proof in three sub-claims. First of them can be proved in
the same way as Sub-claim 1 in the proof of Theorem 3.18.

• Sub-claim 1: Each of the induced representations

δ([ν−
amin−1

2 ρ, ν
bmin−1

2 ρ]) o σ′′

and

L(δ([ν−
amin−1

2 ρ, ν
amin−1

2 ρ]), δ([ν
amin+1

2 ρ, ν
bmin−1

2 ρ])) o σ′′

contains exactly one irreducible tempered subrepresentation of

δ([ν−
a−1
2 ρ, ν

a−1
2 ρ]) o σ′.

The second sub-claim is analogous to Sub-claim 2 in the proof of Theorem
3.18.

• Sub-claim 2: τγ is contained in δ([ν−
amin−1

2 ρ, ν
bmin−1

2 ρ])oσ′′, but τ3−γ is not.

• Sub-claim 3: εσ′(bmin, ρ) = 1 if and only if τβ is contained in δ([ν−
amin−1

2 ρ,

ν
bmin−1

2 ρ]) o σ′′.
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Assume that εσ′(bmin, ρ) = 1. It follows that there is an irreducible representation

π such that µ∗(σ′) ≥ δ([ν 1
2 ρ, ν

bmin−1

2 ρ])⊗ π. Thus, the Jacquet module of τβ with
respect to the appropriate parabolic subgroup contains

δ([ν
1
2 ρ, ν

amin−1

2 ρ])× δ([ν 1
2 ρ, ν

amin−1

2 ρ])⊗ δ([ν 1
2 ρ, ν

bmin−1

2 ρ])⊗ π.

The transitivity of Jacquet modules now implies that there is an irreducible con-
stituent δ1 ⊗ π1 of µ∗(τβ) such that m∗(δ1) contains

δ([ν
1
2 ρ, ν

amin−1

2 ρ])× δ([ν 1
2 ρ, ν

amin−1

2 ρ])⊗ δ([ν 1
2 ρ, ν

bmin−1

2 ρ]). (16)

Since τβ is a subrepresentation of δ([ν−
amin−1

2 ρ, ν
amin−1

2 ρ])oσ′, using the structural
formula we deduce that there are i, j such that −amin+1

2 ≤ i ≤ j ≤ amin−1
2 and an

irreducible constituent δ2 ⊗ π2 of µ∗(σ′) such that

δ1 ≤ δ([ν−iρ, ν
amin−1

2 ρ])× δ([νjρ, ν
amin−1

2 ρ])× δ2.

From the description of Jord(σ′) we obtain that m∗(δ′) does not contain an
irreducible representation of the form νxρ ⊗ π′′ such that x < bmin−1

2 . Since
amin−1

2 < bmin−1
2 , we get i = − 1

2 and j = 1
2 . Using (16) we deduce that δ2 ∼=

δ([ν
1
2 ρ, ν

bmin−1

2 ρ]).
Consequently, δ1 is isomorphic to

δ([ν
1
2 ρ, ν

amin−1

2 ρ])× δ([ν 1
2 ρ, ν

amin−1

2 ρ])× δ([ν 1
2 ρ, ν

bmin−1

2 ρ]) ∼=
∼= δ([ν

1
2 ρ, ν

bmin−1

2 ρ])× δ([ν 1
2 ρ, ν

amin−1

2 ρ])× δ([ν 1
2 ρ, ν

amin−1

2 ρ]).

It follows that µ∗(τβ) contains an irreducible constituent of the form δ([ν
amin+1

2 ρ,

ν
bmin−1

2 ρ])⊗π. Claim 3 implies β = γ, and by the previous sub-claim τβ is contained

in δ([ν−
amin−1

2 ρ, ν
bmin−1

2 ρ]) o σ′′.

Conversely, let us assume that τβ is contained in δ([ν−
amin−1

2 ρ, ν
bmin−1

2 ρ])oσ′′.
By the structural formula, there are i, j such that −amin+1

2 ≤ i ≤ j ≤ bmin−1
2 and

an irreducible constituent δ1 ⊗ π1 of µ∗(σ′′) such that

δ([ν
1
2 ρ, ν

amin−1

2 ρ])× δ([ν 1
2 ρ, ν

amin−1

2 ρ]) ≤

≤ δ([ν−iρ, ν
amin−1

2 ρ])× δ([νj+1ρ, ν
bmin−1

2 ρ])× δ1.

Since amin < bmin, it follows at once that j = bmin−1
2 and that µ∗(σ′′) contains

an irreducible constituent of the form δ([ν
1
2 ρ, ν

amin−1

2 ρ]) ⊗ π1 and, consequently,
that the Jacquet module of σ′ with respect to the appropriate parabolic subgroup
contains

δ([ν
amin+1

2 ρ, ν
bmin−1

2 ρ])⊗ δ([ν 1
2 ρ, ν

amin−1

2 ρ])⊗ π.
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Now in the same way as in the proof of the Claim 5 from the proof of Theorem
3.18 one can see that there is an irreducible representation π2 such that σ′ is a

subrepresentation of δ([ν
1
2 ρ, ν

bmin−1

2 ρ]) o π2. Thus, εσ′(bmin, ρ) = 1. This ends the
proof.

We now prove the main result of this section.

Theorem 4.10. Let σ ∈ R(G) denote a non-strongly positive discrete series. Let
(a, ρ) ∈ Jord(σ) be such that a is defined, εσ((a , ρ), (a, ρ)) = 1 and let σ′ stand

for a discrete series such that σ is a subrepresentation of δ([ν−
a −1

2 ρ, ν
a−1
2 ρ])oσ′.

If εσ′(b, ρ
′) is defined for some (b, ρ′) ∈ Jord(σ′), then εσ′(b, ρ

′) = εσ(b, ρ′).

Proof. Let (b, ρ′) denote an element of Jord(σ′) such that εσ′(b, ρ
′) is defined.

There are two possibilities to consider:

(1) Suppose that b is odd. Let us write ρ′ o σcusp = τ1 + τ−1, where τ1 and
τ−1 are irreducible tempered mutually non-isomorphic representations. Also,
we denote by bmax the maximal element of Jordρ′(σ). If (bmax, ρ

′) does not
appear in Jord(σ′), the claim of the theorem follows from Lemma 4.5, The-
orem 3.18 and Definition 4.4. Suppose that (bmax, ρ

′) ∈ Jord(σ′). By Lemma
4.3, there are unique i, j ∈ {1,−1} such that the Jacquet module of σ with
respect to the appropriate parabolic subgroup contains an irreducible con-

stituent of the form π1 ⊗ δ([νρ′, ν
bmax−1

2 ρ′]) ⊗ τi and such that the Jacquet
module of σ′ with respect to an appropriate parabolic subgroup contains an

irreducible constituent of the form π2 ⊗ δ([νρ′, ν
bmax−1

2 ρ′])⊗ τj . Following the
same lines as in the proof of Lemma 4.3 we deduce that i = j and, conse-
quently, εσ(bmax, ρ

′) = εσ′(bmax, ρ
′). From Theorem 3.18 and Definition 4.4,

we obtain that εσ′(b, ρ
′) = εσ(b, ρ′).

(2) Suppose that b is even. We denote by bmin the minimal element of Jordρ′(σ).
If (bmin, ρ

′) does not appear in Jord(σ′), the claim of the theorem follows
from the previous lemma, Theorem 3.18 and Definition 4.4. Suppose that
(bmin, ρ

′) ∈ Jord(σ′). If εσ′(bmin, ρ
′) = 1, by Lemma 4.7 there is an irreducible

representation π such that σ′ is a subrepresentation of δ([ν
1
2 ρ′, ν

bmin−1

2 ρ′])oπ.

Since σ is a subrepresentation of δ([ν−
a −1

2 ρ, ν
a−1
2 ρ])oσ′, the fact that a > bmin

in the case ρ ∼= ρ′ implies that there is an embedding

σ ↪→ δ([ν
1
2 ρ′, ν

bmin−1

2 ρ′])× δ([ν−
a −1

2 ρ, ν
a−1
2 ρ]) o π,

which implies that εσ(bmin, ρ
′) = 1.

On the other hand, if εσ(bmin, ρ
′) = 1, there is an irreducible representa-

tion π such that µ∗(σ) ≥ δ([ν
1
2 ρ′, ν

bmin−1

2 ρ′]) ⊗ π. Using the embedding σ ↪→
δ([ν−

a −1
2 ρ, ν

a−1
2 ρ]) o σ′ and the fact that a > bmin in the case ρ ∼= ρ′,

the structural formula implies that µ∗(σ′) contains an irreducible constituent
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of the form δ([ν
1
2 ρ′, ν

bmin−1

2 ρ′]) ⊗ π′. Thus, εσ′(bmin, ρ
′) = 1. It follows that

εσ(bmin, ρ
′) = εσ′(bmin, ρ

′). From Theorem 3.18 and Definition 4.4, we obtain
that εσ′(b, ρ

′) = εσ(b, ρ′) and theorem is proved.

5 Classification of discrete series

We start this section with the definition of the Jordan triples.
These are the triples of the form (Jord, σc, ε) where

(1) σc is an irreducible cuspidal representation of some Gn.

(2) Jord is the finite set (possibly empty) of pairs (a, ρ), where ρ ∈ R(GL) is an
irreducible essentially self-dual cuspidal unitarizable representation, and a is
a positive integer such that a is odd if and only if L(s, ρ, r) does not have a
pole at s = 0, for the local L-function L(s, ρ, r) as in the beginning of Section
3. For such a representation ρ, let Jordρ stand for the set of all a such that
(a, ρ) ∈ Jord. For a ∈ Jordρ, let a = max{b ∈ Jordρ : b < a}, if this set is
non-empty.

(3) ε is a function defined on a subset of Jord∪(Jord× Jord) and attains values
1 and -1. Furthermore, ε is defined on a pair ((a, ρ), (a′, ρ′)) ∈ Jord× Jord if
and only if ρ ∼= ρ′ and a = a′ . Also, ε is defined on an ordered pair (a, ρ) if
and only if a is even or Jordρ(σc) = ∅. Note that if for some (a, ρ) ∈ Jord both
a and ε(a, ρ) are defined, then ε(a , ρ) is also defined.

(4) For (a, ρ) ∈ Jord such that both a and ε(a, ρ) are defined, we have the fol-
lowing compatibility condition:

ε(a , ρ) · ε(a, ρ) = ε((a , ρ), (a, ρ)).

We say that the Jordan triple (Jord′, σ′c, ε
′) is subordinated to the Jordan

triple (Jord, σc, ε) if there exists (a, ρ) ∈ Jord such that a ∈ Jordρ is defined,
ε((a , ρ), (a, ρ)) = 1, σ′c

∼= σc, Jord′ = Jord \{(a , ρ), (a, ρ)}, and we have:

(1) ε((b , ρ′), (b, ρ′)) = ε′((b , ρ′), (b, ρ′)), for all ρ′ 6∼= ρ and all b ∈ Jordρ′ such that
b is defined.

(2) ε((b , ρ), (b, ρ)) = ε′((b , ρ), (b, ρ)), for all b ∈ Jordρ such that b is defined and
either b < a or b > a.

(3) If in Jordρ we have a = b and (a ) = c, then

ε′((c, ρ), (b, ρ)) = ε((c, ρ), (a , ρ)) · ε((a, ρ), (b, ρ)).

(4) If ε′(b, ρ′) is defined for some (b, ρ′) ∈ Jord, then ε′(b, ρ′) = ε(b, ρ′).
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Definition 5.1. We say that the Jordan triple (Jord, σc, ε) is a triple of alternated
type if for every ρ such that Jordρ 6= ∅ we have

• ε((a , ρ), (a, ρ)) = −1 whenever a is defined,

• there is an increasing bijection φρ : Jordρ → Jord′ρ(σc), where

Jord′ρ(σc) =

{
Jordρ(σc) ∪ {0} if min(Jordρ) is even and ε(min(Jordρ), ρ) = 1;

Jordρ(σc) otherwise.

We say that the Jordan triple (Jord, σc, ε) dominates the Jordan triple (Jord′, σc, ε
′)

if there is a sequence of Jordan triples (Jordi, σc, εi), 1 ≤ i ≤ k, such that
(Jordk, σc, εk) = (Jord, σc, ε), (Jord1, σc, ε1) = (Jord′, σc, ε

′), and (Jordi−1, σc,
εi−1) is subordinated to (Jordi, σc, εi) for i ∈ {2, 3, . . . , k}. Jordan triple (Jord, σc,
ε) is called an admissible triple if it dominates a triple of alternated type.

For the precise connection between the triples of alternated type and the
strongly positive discrete series, we refer the reader to beginning of the proof of
Theorem 5.4.

The proof of the following lemma is straightforward:

Lemma 5.2. Let (Jord, σc, ε) denote an admissible triple. Let ρ ∈ R(GL) denote
an irreducible essentially self-dual cuspidal unitarizable representation, and let a, b
denote positive integers which are odd if and only if L(s, ρ, r) does not have a pole at
s = 0. Suppose that a < b and that there is no x ∈ Jordρ such that a ≤ x ≤ b. Then
there are exactly two admissible triples of the form (Jord∪{(a, ρ), (b, ρ)}, σc, ε′)
such that ε′((a, ρ), (b, ρ)) = 1, which dominate the admissible triple (Jord, σc, ε).

It follows from the results obtained in the previous section that to a discrete
series σ one can attach an admissible triple (Jord(σ), σcusp, εσ), where Jord(σ) is
the set of the Jordan blocks of σ, σcusp is the partial cuspidal support of σ, and εσ
is given by Definitions 3.6 and 4.4. We show that in this way we obtain a bijection
between the set of all isomorphism classes of discrete series in R(G) and the set
of all admissible triples.

Let us first show that in a described way we obtain an injection.

Theorem 5.3. Suppose that σ and σ′ are discrete series such that

(Jord(σ), σcusp, εσ) = (Jord(σ′), σ′cusp, εσ′).

Then σ ∼= σ′.

Proof. If the Jordan triple (Jord(σ), σcusp, εσ) is an admissible triple of alternated
type, then the claim follows directly from known results for the strongly positive
discrete series ([8, Theorem 5.14] and [14, Lemma 3.5]).
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Now suppose that the Jordan triple (Jord(σ), σcusp, εσ) is not an admissi-
ble triple of alternated type, i.e., that σ is not a strongly positive discrete se-
ries. Let (σ1, σ2, . . . , σn), σi ∈ Irr(Gni), denote an ordered n-tuple of discrete
series such that σ1 is strongly positive, σn ∼= σ and, for every i = 2, 3, . . . , n,
there are (ai, ρi), (bi, ρi) ∈ Jord(σ) such that in Jordρi(σi) hold ai = (bi) ,
εσi((ai, ρi), (bi, ρi)) = 1 and

σi ↪→ δ([ν−
ai−1

2 ρi, ν
bi−1

2 ρi]) o σi−1.

The rest of the proof goes by induction over n, and we have seen that our
claim holds for n = 1.

Let us assume that n ≥ 2 and that the claim holds for all k < n. We prove it
for n.

Since (Jord(σ), σcusp, εσ) = (Jord(σ′), σ′cusp, εσ′), it follows that there is a

discrete series σ′n−1 such that σ′ is a subrepresentation of δ([ν−
an−1

2 ρn, ν
bn−1

2 ρn])o
σ′n−1. Using Proposition 3.3, Theorem 3.18 and Theorem 4.10, we obtain that

(Jord(σn−1), σcusp, εσn−1
) = (Jord(σ′n−1), σ′cusp, εσ′n−1

).

The inductive assumption now implies that σn−1 ∼= σ′n−1, so σ and σ′ are

irreducible subrepresentations of δ([ν−
an−1

2 ρn, ν
bn−1

2 ρn]) o σn−1. Theorem 3.17
implies that such an induced representation contains two irreducible subrepresen-
tations, which are mutually non-isomorphic discrete series. We denote them by
σ(1) and σ(2). Let us now prove that the admissible triples attached to σ(1) and
σ(2) are different.

If Jordρn(σn−1) = ∅, it can be concluded from Proposition 3.3 and Theorem
3.12 that Jordρn(σcusp) = ∅. By the Basic Assumption, either ρnoσcusp reduces or

ν
1
2 ρn o σcusp reduces. Using Corollary 4.6 and Lemma 4.8, we deduce that there

are i1, i2 ∈ {1, 2} such that i1 6= i2 and εσ(i1)(an, ρn) = εσ(i1)(bn, ρn) = 1 and
εσ(i2)(an, ρn) = εσ(i2)(bn, ρn) = −1.

If Jordρn(σn−1) 6= ∅ and (an) ∈ Jordρn(σ) is defined, Claims 1 and 2 in the
proof of Theorem 3.18 imply that there is a unique i1 ∈ {1, 2} such that σ(i1) is

a subrepresentation of δ([ν
an+1

2 ρn, ν
bn−1

2 ρn]) o τ for a tempered representation τ
such that

µ∗(τ) ≥ δ([ν
(an) +1

2 ρn, ν
an−1

2 ρn])× δ([ν
(an) +1

2 ρn, ν
an−1

2 ρn])⊗

δ([ν−
(an) +1

2 ρn, ν
(an) −1

2 ρn]) o σn−1.

Using Claims 1, 2 and 4 in the proof of Theorem 3.18 one can deduce that

εσ(i1)(((an) , ρn), (an, ρn)) = 1

and
εσ(i2)(((an) , ρn), (an, ρn)) = −1
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for i2 ∈ {1, 2}, i1 6= i2.
If Jordρn(σn−1) 6= ∅ and an is the minimal element of Jordρn(σ), we de-

note by cn an element of Jordρn(σ) such that (cn) = bn. Using Claims 1, 3 and
5 in the proof of Theorem 3.18 one can see that there is a unique i1 ∈ {1, 2}
such that σ(i1) is a subrepresentation of δ([ν

an+1
2 ρn, ν

bn−1
2 ρn])o τ for a tempered

representation τ such that µ∗(τ) contains an irreducible constituent of the form

δ([ν
an+1

2 ρn, ν
cn−1

2 ρn])⊗ π1, and it follows that

εσ(i1)((bn, ρn), (cn, ρn)) = 1

and
εσ(i2)((bn, ρn), (cn, ρn)) = −1

for i2 ∈ {1, 2}, i1 6= i2.
Consequently, the admissible triples attached to σ(1) and σ(2) are different,

and it follows that σ ∼= σ′.

It remains to show that to every admissible triple corresponds a discrete
series.

Theorem 5.4. Let (Jord, σc, ε) denote an admissible triple. Then there is a dis-
crete series σ ∈ R(G) such that (Jord(σ), σcusp, εσ) = (Jord, σc, ε).

Proof. Let us first assume that (Jord, σc, ε) is an admissible triple of alternated
type. For each ρ such that Jordρ 6= ∅, we write the elements of Jordρ in increasing
order aρ1 < aρ2 < · · · < aρkρ . Using [8, Theorem 5.15] we deduce that the induced
representation

(
∏
ρ

kρ∏
i=1

δ([ν
φρ(a

ρ
i
)+1

2 ρ, ν
a
ρ
i
−1

2 ρ])) o σc

has a unique irreducible subrepresentation, which is a strongly positive discrete
series and we denote it by σ. From [14, Theorem 5.3] or [19, Section 7] follows at
once that (Jord(σ), σcusp, εσ) = (Jord, σc, ε).

Now suppose that (Jord, σc, ε) is not an admissible triple of alternated type.
Let (Jordi, σc, εi), 1 ≤ i ≤ n, denote a sequence of Jordan triples such that
(Jordn, σc, εn) = (Jord, σc, ε), (Jord1, σc, ε1) is an admissible triple of alternated
type, and (Jordi−1, σc, εi−1) is subordinated to (Jordi, σc, εi) for i ∈ {2, 3, . . . , n}.

The rest of the proof goes by induction over n, and we have seen that our
claim holds for n = 1.

Let us assume that n ≥ 2 and that the claim holds for all k < n. We prove it
for n.

Suppose that Jord = Jordn−1 ∪{(a , ρ), (a, ρ)}. By the inductive assump-
tion, there is a discrete series σ′ ∈ R(G) such that (Jord(σ′), σcusp, εσ′) =
(Jordn−1, σc, εn−1).

By Theorem 3.17, there are two mutually non-isomorphic discrete series sub-

representations of δ([ν−
a −1

2 ρ, ν
a−1
2 ρ]) o σ′, which we denote by σ1 and σ2. Note
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that both the admissible triples (Jord(σ1), σcusp, εσ1) and (Jord(σ2), σcusp, εσ2)
dominate the admissible triple (Jordn−1, σc, εn−1) and, by the previous theorem,
(Jord(σ1), σcusp, εσ1

) 6= (Jord(σ2), σcusp, εσ2
). By Lemma 5.2, there is an i ∈ {1, 2}

such that (Jord(σi), σcusp, εσi) = (Jord, σc, ε) and the theorem is proved.
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